
HDF5 Application Tuning
Part 1: There is more than one way to skin a cat(fish)

Gerd Heber

Setting
● Practical advice for beginners
● Work with a “simple” problem for clarity
● Show three tools that will be sufficient most of the time
● A lot of material

○ Go w/ the flow and ignore the parts that seem irrelevant / unclear
○ Focus on possibilities and remember Murphy’s law
○ Try it with your code!

● Part 1 (in a sandbox), Part 2 (on a “real” cluster)
● It’s all about method (and resources)

A Simple Problem
Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid

FOREACH step 1 .. S

FOREACH count 1 .. A

CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (strong | weak)

(WRITE | READ) the ARRAY (to | from) an HDF5 file

END

END

END

S(teps) = 20, A(rrays) = 500, X = 100, Y = 200 (See adios_iotest)

Figure: GeeksForGeeks

https://github.com/ornladios/ADIOS2/tree/master/source/utils/adios_iotest
https://www.amazon.com/What-Could-Possibly-Go-Wrong/dp/0931181690
https://www.geeksforgeeks.org/multidimensional-arrays-c-cpp/

Missing Information
● How are the array variables represented in HDF5?

○ 2D, 3D, 4D datasets
○ Are the extents known a priori?
○ How are the dimensions ordered?
○ Groups?

● How (order) is the data written and is the data read the same way?
● What’s that storage layout?

○ How many physical files?
○ Contiguous or chunked, etc.
○ Is the data compressible?

● What’s the file system or data store?
● Collective vs. independent MPI-IO
● ...

The “Raw HDF5” Dilemma

What many
users want

#include “hdf5.h”

Turtles all the
way down

Basic Combinations (24)
● Six griddings

○ /step=[0..10]/array=[0..499] Dataset {100, 200}

○ /array=[0..499]/step=[0..19] Dataset {100, 200}

○ /step=[0..20] Dataset {500, 100, 200}

○ /array=[0..499] Dataset {20, 100, 200}

○ /dataset Dataset {20, 500, 100, 200}

○ /dataset Dataset {500, 20, 100, 200}

● Two layouts
○ Contiguous or chunked

● Two MPI modes
○ Collective or independent

● ...

Environment
● Google Cloud (other fine choices are available: Amazon, Microsoft, Oracle, ...)
● n2-standard-8 instance (8 vCPU, 32 GB RAM)
● Ubuntu 20.04 LTS
● Two local NVMe attached SSDs, single 750 GB MD RAID 0 volume

○ Write BW w/ 1 MB blocksize: 819 MB/s
○ Random read BW w/ 4 KB blocksize: 1,474 MB/s
○ Random write BW w/ 4 KB blocksize: 664 MB/s

● See the scripts in the gcloud folder

https://cloud.google.com/

Code overview
● Code can be found on GitHub
● Basic structure

○ Read and parse configuration from INI file
○ Create HDF5 file
○ Write phase
○ Close HDF5 file
○ Open HDF5 file
○ Read phase
○ Close HDF5 file
○ Write CSV output file w/ timings

https://github.com/HDFGroup/hdf5-iotest

Baseline
● Run 24 parameter configurations
● Weak scaling

○ Each process writes 500*100*200*8 (~ 80 MB) per step (20 steps)

● Single processor, 4 processor grids: 1 x 4, 2 x 2, 4 x 1
● Measure times for dataset creation, write, and read

dim 2 dim 3 dim 4

cont.

chunk.

Legend

Shorter bar “=” good (shorter time)

Taller bar “=” bad (longer time)

se
co

nd
s

Observations
● 3-4x variability in performance
● Dataset creation overhead when using chunking

○ Most pronounced for two-dimensional datasets
■ Even for contiguous layout

● Process topology matters (?)
● There are limits to what we can get out of “user instrumentation”

Reducing the “Dataset Creation Overhead”
● “Low-hanging fruit”
● HDF5 dataset creation

○ Storage allocation
■ When

○ Dataset initialization
■ Y/N, when, what

○ (Metadata management)

● Library defaults (may not be what you expect)
● Functions H5Pset_alloc_time, H5Pset_fill_time,

H5Pset_fill_value
● In our example, there’s no need for initialization

○ Let’s try H5Pset_fill_time(dcpl, H5D_FILL_TIME_NEVER) !

dim 2 dim 3 dim 4

Legend

se
co

nd
s

Next steps
● Relatively low variability w/ 4 x 1 process grid
● There’s not much else these charts can tell us 😟
● ⇒ Bring in tools

○ Gperftools
○ Darshan
○ Recorder
○ (TAU)

● Part 2
○ Run w/ a parallel file system!
○ Explore strong scaling!

https://github.com/gperftools/gperftools
https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/uiuc-hpc/Recorder
https://www.cs.uoregon.edu/research/tau/

Gperftools

● Source on GitHub
● Use w/ KCachegrind
● See profiler.sh

Run 8

Run 17

https://github.com/gperftools/gperftools
http://kcachegrind.sourceforge.net/html/Home.html
https://github.com/HDFGroup/hdf5-iotest/blob/master/src/profiler.sh

Darshan
● Source on GitLab

○ Use the latest version (3.2.1) or build from source

● Runtime + utilities
● Performance counters

○ Grouped by modules (POSIX, MPI-IO, HDF5, etc.)
○ Record IDs for files, HDF5 datasets, etc.
○ MPIIO_SIZE_READ_AGG_1K_10K, POSIX_RW_SWITCHES, H5D_REGULAR_HYPERSLAB_SELECTS, etc.

● Tools for parsing and summarization
● Customize for the relevant counters
● Don’t miss the Python module

○ See the example by Alexandar Jelenak (HDF Group)!

https://www.mcs.anl.gov/research/projects/darshan/
https://xgitlab.cels.anl.gov/darshan/darshan
https://github.com/HDFGroup/hdf5-iotest/blob/master/examples/pydarshan-playground.html

4x1 Run 7

T
R
O
U
B
L
E

Application I/O Similarity
● Construct an I/O signature from

Darshan counters
● Calculate the similarity of different

runs or applications
● Research by Neeraj Rajesh (IIT)
● See his SC20 poster!
● Figure shows the baseline

(dis-)similarity
● Are you thinking about redecorating

your kitchen or bathroom?

Recorder
● A multi-level I/O tracing and trace data analysis tool

○ Multi-level: HDF5, MPI-IO, POSIX I/O

● Source on GitHub
● Function statistics (count, timing)
● Per rank access patterns
● Accessed offsets by rank and time
● Data hazards (RAW, WAR, WAW)
● …
● Nice HTML reports
● Examples

Figure by Chen Wang (UIUC)

https://github.com/uiuc-hpc/Recorder
https://github.com/uiuc-hpc/Recorder/blob/master/test/showoff.jpg

T
R
O
U
B
L
E

(Next time.)

Summary
● Know what your system’s capabilities are

○ It’s easy to get off on the wrong foot
○ Find a quiet corner where you are in control and there’s no queue, e.g., cloud

● Do back-of-the-envelope calculations and have expectations
○ Spot bugs/trouble

● Keep the number of turtles/variables as small as possible
● Start with single process analysis!
● Use the right tool(s) for the job
● Multiple perspectives; too much or too little information begets confusion
● Know when you’ve exhausted available information

Next Time
● In depth analysis of Darshan results and Recorder plots
● The next turtle/hurdle: MPI-IO and parallel file systems
● Strong scaling

