
GPU Direct IO with HDF5
John Ravi • Quincey Koziol • Suren Byna

• With large-scale computing systems are moving towards using GPUs as workhorses of
computing

• file I/O to move data between GPUs and storage devices becomes critical

• I/O performance optimizing technologies
• NVIDIA’s GPU Direct Storage (GDS) - reducing the latency of data movement between

GPUs and storage.

• In this presentation, we will talk about a recently developed virtual file driver (VFD)
that takes advantage of the GDS technology allowing data transfers between GPUs and
storage without using CPU memory as a “bounce buffer”

Motivation

Traditional Data Transfer without GPUDirect Storage

3

1. fd = open(“file.txt”, O_RDONLY);
2. buf = malloc(size);
3. pread(fd, buf, size, 0);
4. cudaMalloc(d_buf, size);
5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);

Data Transfer with GPUDirect Storage (GDS)

4

NVIDIA GPUDirect Storage
1. fd = open(“file.txt”, O_RDONLY | O_DIRECT, …);
2. cudaMalloc(d_buf, size);
3. cuFileRead(fhandle, d_buf, size, 0, 0);

Traditional Data Transfer

1. fd = open(“file.txt”, O_RDONLY, …);

2. buf = malloc(size);

3. pread(fd, buf, size, 0);

4. cudaMalloc(d_buf, size);

5. cudaMemcpy(d_buf, buf, size, cudaMemcpyHostToDevice);

No need for a
“bounce buffer”

HDF5 Virtual File Driver(s)

VFD Description

SEC2 default driver

POSIX file-system functions
like read and write to perform
I/O to a single file

DIRECT force data to be written
directly to file-system

disables OS buffering

HDF5 File
Format

File

Virtual File
Layer

SEC2

Internals Memory
Mgmt

Datatype
Conversion

I/O
Filters

Chunked
Storage

Version
Compatibility

et cetera…

Data Model Objects
Files, Groups, Datasets,

Attributes, …

Tunable Properties
Chunk Size, I/O Driver, …

HD
F5

 L
ib

ra
ry

St
or

ag
e

netCDF-4High Level
APIs

HDFview

Ap
ps h5dump
Java

H5Hut

API

C++/FORTRAN/Python

Infrastructure
Datatype, Dataspace, IDs, … APIs

Direct IO
to
Filesystem

DIRECT

GPUDirect
to
Filesystem

GDS
GDS Enable GPUDirect Storage

• GDS VFD differences from SEC2 VFD
• File Descriptor is open with O_DIRECT (disables all OS buffering)
• Read and Write handlers needs to distinguish between CPU (metadata) and GPU memory

pointers
• cuFileDriver needs to be initialized per run

• Some overhead for each I/O call
• Querying CUDA Runtime for information about memory pointers
• cuFile buffer registration and deregistration

HDF5 GDS – Virtual File Driver

• GDS VFD knobs
• num_threads – number of pthreads servicing one cuFile request
• blocksize – transfer size of one cuFile request

Experimental Evaluation – Lustre File System

Image Source: https://wiki.lustre.org/Introduction_to_Lustre

• System Configuration
• NVIDIA DGX-2
• 16x Tesla v100
• 2x Samsung NVMe SM961/PM961 RAID0 (Seq Reads = ~6.4 GB/s, Seq Write = ~3.6 GB/s)
• Lustre File System (4 OSTs, 1MB strip size)

• Benchmarks
• Local Storage

• Sequential R/W Rates
• Lustre File System

• Multi-threaded Sequential R/W Rates
• Multi-GPU (one GPU per process, one file per process)

Experimental Evaluation

• HDF5 GDS achieves higher
write rates for requests
greater than 512 MB

• Possible Optimizations:
• make user specify the

location of the memory
pointer for each memory
transfer

• cuFile buffer register
before I/O call

Write Performance – Local Storage

Read Performance – Local Storage

• HDF5 GDS achieves higher
read rates for requests
greater than 256 MB

• Possible Optimizations:
• make user specify the

location of the memory
pointer for each memory
transfer

• cuFile buffer register
before I/O call

• Using more threads increases write
rates dramatically (almost 2x speed
for using 8 threads instead of 4
threads)

• Varying blocksize did not change
much

• Default behavior of SEC2 (no
threading)

Multi-Threaded Writes, Single GPU, Lustre File System

• SEC2 read rates are best in most
cases

• More threads did not offer an
improvement in read rate

• Read ahead was left on for this
experiment

Multi-Threaded Read, Single GPU, Lustre File System

Multi-Process Writes, Multiple GPU, Lustre File System

• GDS VFD clear advantage over
SEC2 VFD for a distributed file
system

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Writes
• Single GPU per MPI Rank
• Single HDF5 file per MPI Rank
• File size: 1GB

• SEC2 VFD dominates over GDS VFD
(read ahead was left enabled)

GDS VFD Knobs
• 4 threads (OSTs)
• 1MB blocksize (strip size)

Multi-Process Reads
• Single GPU per MPI Rank
• Single HDF5 file per MPI Rank
• File size: 1GB

Multi-Process Reads, Multiple GPU, Lustre File System

• HDF5 GDS VFD improves the write rates over SEC2 VFD
• HDF5 SEC2 VFD seems to offer higher read rates over GDS VFD mainly because of

optimizations at other layers (read ahead)

Future Work
• GDS for Parallel HDF5 – MPIIO VFD

• MPI-IO developers are working on this
• HDF5 GDS VFD tuning knobs for Distributed File Systems
• Avoiding the overhead

• Track data buffer locations
• Track data buffer reuse
• Async IO

Conclusions

• Contact:
John Ravi jjravi@lbl.gov
Quincey Koziol koziol@lbl.gov
Suren Byna sbyna@lbl.gov

Thank you

mailto:jjravi@lbl.gov
mailto:koziol@lbl.gov
mailto:sbyna@lbl.gov

