
Experiences Integrating
HDF5 into DREAM.3D

Mr. Michael A. Jackson
Owner/Developer

@ BlueQuartz Software

DREAM.3D
● Air Force Research Laboratory (AFRL) sponsored project

○ Continuously developed since 2009
○ Unified cross platform framework to allow disperate codes to work

together
● Materials Science and Engineering (MSE) Data Analysis

○ Qt5 based GUI application
○ Extensible Framework

● Open Source hosted on GitHub
● Foster collaboration between MSE and engineering/design groups

○ Repeatable workflows
● Portable Data

○ Self describing, Fast I/O, available from desktop to HPC

● http://dream3d.bluequartz.net
● http://www.github.com/bluequartzsoftware/dream3d
● https://my.cdash.org/index.php?project=DREAM3D

http://dream3d.bluequartz.net
http://www.github.com/bluequartzsoftware/dream3d

DREAM.3D User Interface (6.5 version)

Selecting Open Binary File Format

● Spent a fair bit of time evaluating lots of different possibilities
● 2006 Time Frame

○ Images + sidecar file
○ Binary XML
○ Plain Binary Files + sidecar file
○ A few others which I can’t remember

● HDF5 checked most of the boxes that we needed
○ Not a lot (at the time) of built up infrastructure for HDF5
○ Fast I/O, Self describing, Flexible
○ All the reasons that you might already be using HDF5

● In the end, HDF5 saves developer frustration, developer time, creates more
consistent files that can be exchanged among research groups.

HDF5 & DREAM.3D History

● Started with HDF5 1.6 (2008/2009)
○ Different build systems on each platform, difficult to get correct on Windows/MSVC
○ https://github.com/BlueQuartzSoftware/H5Support

● Moved to HDF5 1.8 (Late 2009)
○ Collaborated with Dr. John Biddiscombe to add CMake support to HDF5 1.8
○ Handed that code off to THG where it has been embraced and maintained since
○ Enables easier integration and use of HDF5 in DREAM3D, and other CMake based projects,

from a configuration/compilation point of view
○ Changes to target naming inside of CMake throughout 1.8 series was problematic

● Moved to HDF5 1.10 (Late 2018)
○ Minor code updates in DREAM.3D
○ Generally smooth sailing

H5EBSD: Moving an Industry to HDF5
● EBSD: Electron BackScatter Diffraction

○ Use an electron beam to reveal internal structure of materials
● EBSD equipment vendors all have separate and incompatible file formats

○ Only readable format for external applications is ASCII text
○ Importing ASCII data is slow, prone to failures and has precision (float) issues
○ Advanced users need access to the raw data, not the processed data.
○ Raw data hidden away in proprietary file formats
○ Three main OEMs: EDAX, Oxford Instruments, Bruker

● DREAM.3D already generated HDF5 archives where those ASCII files were
converted to a single HDF5 file (.h5ebsd)
○ Faster loads
○ More descriptive
○ Multiple ASCII files converted to single HDF5 file

● https://link.springer.com/article/10.1186/2193-9772-3-4

https://link.springer.com/article/10.1186/2193-9772-3-4

From Text to HDF5: EBSD Example

H5EBSD: Moving an Industry to HDF5

● Timeline
○ 2013 First conversations with EDAX, example code sent to EDAX
○ 2014 EDAX Updated release with support for writing HDF5 files
○ 2016 Bruker has tool to convert from .bcf (proprietary format) to HDF5
○ 2019 Oxford Instruments starts to use HDF5 as a supported file format

● Positive feedback from EBSD users regarding the changes
○ Easier to I/O data to/from their custom data analysis programs or control systems

Current Trends in Open Source

● Recent trends with some open source companies is to put the
source/binaries behind a “wall”.
○ Paid wall, subscription wall, free account wall

● These walls stop automated scripts in their tracks
○ DREAM3D CI broke, DREAM3D SDK Build Scripts broke.
○ BQ mirrored the HDF5 sources/binaries for DREAM.3D’s use. All that tracking information

was lost to The HDF Group
○ DREAM3D seriously considered moving away from HDF5

● We need better ways of financially supporting companies that produce open source software

HDF5: Open Discussions

● The HDF Group moving to more open development
○ Enlightening discussion on the HDF Forum.
○ Helped to understand the issues that The HDF Group were/are facing

● Repositories hosted on GitHub
○ https://github.com/HDFGroup/hdf5
○ Submit bugs/feature requests/code through the “Issues” area
○ Standard PR (Pull Release) workflow

● Binaries easily downloaded from www.hdfgroup.com
○ https://www.hdfgroup.org/downloads/hdf5/

● Downloads help HDF Group make a case for continued support from
funding agencies

https://www.hdfgroup.org/downloads/hdf5/

Contributing & Helping HDF5 Ecosystem

● If you are using HDF5 consider the value proposition that HDF5 has brought
to your project.

● Consider getting paid support/consulting from The HDF Group
○ However small it might be

● If you have projects/proposals where data storage comes into play, talk to
The HDF Group about being a partner/sub on your contract
○ This takes longer term planning and discussions with the groups for whom you work
○ Start those discussions now.

● Most people think that giving back is fixing a bug in code
● Any aspect of development can be a target for your efforts

○ Code, Tests, Documentation, build bots
○ All of these things can help

Takeaways

● HDF5 saves developer time
● Large passionate community of HDF5 users/developers
● Fosters collaboration between research groups
● Be advocates of HDF5 and introduce it into new industries
● HDF5 is not *free* to develop, although it is *free* to use
● You should consider using HDF5 Group on your next project
● The HDF Group are some of the best developers that I have had the pleasure

of interacting with.

Setting the context...

● BlueQuartz Software
○ 3 Full Time, 3 part time
○ Primarily funding streams are from DoD sources

● All of our software has been open source
● Budgets are tight and funding is even tighter
● Finding funding is sometimes difficult for your own company, but consider

the value proposition of HDF5 and your own project(s)
● Strong advocate for HDF5 since 2005’ish

