Experiences Integrating HDF5 into DREAM.3D

Mr. Michael A. Jackson Owner/Developer @ BlueQuartz Software

DREAM.3D

- Air Force Research Laboratory (AFRL) sponsored project
 - Continuously developed since 2009
 - Unified cross platform framework to allow disperate codes to work together
- Materials Science and Engineering (MSE) Data Analysis
 - Qt5 based GUI application
 - Extensible Framework
- Open Source hosted on GitHub
- Foster collaboration between MSE and engineering/design groups
 - Repeatable workflows
- Portable Data
 - Self describing, Fast I/O, available from desktop to HPC
- http://dream3d.blueguartz.net
- <u>http://www.github.com/bluequartzsoftware/dream3d</u>
- https://my.cdash.org/index.php?project=DREAM3D

	0	(08) SmallIN100 Full Reconstruction - DREAM3D	
	Pipeline E	× 1 Import H5EBSD File	Data Structure 문 ×
01	Import H5EBSD File	Parameters	→ Small IN100 ★
02	Threshold Objects		Confidence Index *
03	Convert Orientation Representation	/Users/mjackson/Applications/Data/Output/Reconstruction/SmallIN100.h5ebsd	EulerAngles *
04	Align Sections (Misorientation)	X Dim: 189 X Res: 0.25 Minimum Slice: 1 EBSD Manufacturer: TSL	Fit 🗶
05	Icolate Largert Easture (Identify Sample)	Y Dim: 201 Y Res: 0.25 Maximum Slice: 117 Sample Transformation (Recommended): 180 @ <010>	Phases *
05	isolate Largest Feature (identity sample)	Data Arrays to Read	SEM Signal 💥
06	Align Sections (Feature Centroid)	Start Slice 1 SEM Signal	A Phase Data 💥
07	Neighbor Orientation Comparison (Bad Data)	End Slice 117 🜍 🗹 Image Quality	LatticeConstants *
08	Neighbor Orientation Correlation	✓ Use Recommended Transformations □ Y Position	MaterialName 🗙
09	Segment Features (Misorientation)	Euler Representation Radians 💙 🗹 Confidence Index	
10	Find Feature Phases	🗹 Fit	Filter List Bookmarks
11	Find Feature Average Orientations	X Position	Filter List 문 ×
12	Find Feature Neighbors	✓ EulerAngles	Search for filter
12	Marga Turing	Phases	Abaqus Hexahedron Exporter
10		Created Objects	 Adaptive Alignment (Feature)
14	Find Feature Sizes	Data Container Small IN100	💗 Adaptive Alignment (Misorient
15	Minimum Size		Vice Adaptive Alignment (Mutual In
16	Find Feature Neighbors		Add Bad Data
17	Minimum Number of Neighbors	Cell Attribute Matrix EBSD Scan Data	Vign Sections (Feature)
18	Fill Bad Data	Cell Ensemble Data	Align Sections (Feature Centr
	Start Pipeline	Cell Ensemble Attribute Matrix Phase Data	Align Sections (List)
	Pipeline Issues		Pipeline Output 문 ×
Inde	Filter	Description Code Code	pened "(08) SmallIN100 Full Reconstruction" Pipeline
	If this filter modi	es the Cell Level Array 'Small IN100/EBSD Scan Data/FeatureIds', all arrays of type NeighborList will be deleted. These arrays	dded 22 filters starting at index 1
15	Minimum Size	-5556	
	Small IN100/Gra Small IN100/Gra	Data/NeighborList2 Data/SharedSurfaceAreaList2	

DREAM.3D User Interface (6.5 version)

Selecting Open Binary File Format

- Spent a fair bit of time evaluating lots of different possibilities
- 2006 Time Frame
 - Images + sidecar file
 - Binary XML
 - Plain Binary Files + sidecar file
 - A few others which I can't remember
- HDF5 checked most of the boxes that we needed
 - Not a lot (at the time) of built up infrastructure for HDF5
 - Fast I/O, Self describing, Flexible
 - All the reasons that you might already be using HDF5
- In the end, HDF5 saves developer frustration, developer time, creates more consistent files that can be exchanged among research groups.

HDF5 & DREAM.3D History

• Started with HDF5 1.6 (2008/2009)

- Different build systems on each platform, difficult to get correct on Windows/MSVC
- https://github.com/BlueQuartzSoftware/H5Support

• Moved to HDF5 1.8 (Late 2009)

- Collaborated with Dr. John Biddiscombe to add CMake support to HDF5 1.8
- Handed that code off to THG where it has been embraced and maintained since
- Enables easier integration and use of HDF5 in DREAM3D, and other CMake based projects, from a configuration/compilation point of view
- Changes to target naming inside of CMake throughout 1.8 series was problematic

• Moved to HDF5 1.10 (Late 2018)

- Minor code updates in DREAM.3D
- Generally smooth sailing

H5EBSD: Moving an Industry to HDF5

EBSD: Electron BackScatter Diffraction

- Use an electron beam to reveal internal structure of materials
- EBSD equipment vendors all have separate and incompatible file formats
 - Only readable format for external applications is ASCII text
 - Importing ASCII data is slow, prone to failures and has precision (float) issues
 - Advanced users need access to the raw data, not the processed data.
 - Raw data hidden away in proprietary file formats
 - Three main OEMs: EDAX, Oxford Instruments, Bruker
- DREAM.3D already generated HDF5 archives where those ASCII files were converted to a single HDF5 file (.h5ebsd)
 - Faster loads
 - More descriptive
 - Multiple ASCII files converted to single HDF5 file
- https://link.springer.com/article/10.1186/2193-9772-3-4

From Text to HDF5: EBSD Example

-816 -180.080 -768 -180.080

****	TEM_PIXper x-star y-star z-star WorkingDis	rUM stance	1.808908 0.372308 0.689308 0.978108 5.808088								
* * * * * * * * * * *	Phase 1 MaterialNa Formula Info Symmetry LatticeCon NumberFami hklFamilia hklFamilia		<pre># TEM_PIXperUM # x-star # y-star # z-star # WorkingDistar # Phase 1 # MaterialName # Formula Ni</pre>	nce Nick	1.000000 0.372300 0.687300 0.970100 5.000000						
	GRID: Sqrt XSTEP: 0.2 YSTEP: 0.2 NCOLS_ODD NCOLS_EVEP		<pre># Info # Symmetry # LatticeConsta # NunberFamilie # hklFamilies # hklFamilies # hklFamilies # hklFamilies # categories 0</pre>		TEM_PIXperUM x-star y-star z-star WorkingDistanc Phase 1 MaterialName	e Nicke	1.890900 0.372300 0.689300 0.970100 5.800000				
# # # # # # [[NROWS: 29. OPERATOR: SAMPLEID: SCANID: 9.009000 12 9.000000 12		# # GRID: SqrGrid # XSTEP: 0.250 # YSTEP: 0.250 # NCOLS_0DD: 14 # NCOLS_EVEN: 1 # NCOUS_EVEN: 1 # OPERATOR: // # # SAMPLEID: # SCANID:	10 11 11 12 13 14 15 16 17 18 19 20 21	Formula Ni J Info J Symmetry LatticeConstan J NumberFamilies HklFamilies HklFamilies Klategories 0 8 GRID: SqrGrid XSTEP: 0.25008	1 2 3 4 5 6 7 8 9 10 11	FEM_PIXperUM Fx-star Fy-star Fx-star WorkingDistance F Fhase 1 HaterialName Formula Ni Formula Ni Formula Ni Formula Ni Formula Ni Formula Ni	1. 0. 0. 5. Nickel	606000		96 999
		32 33 34 35	# 0.00000 12.54 0.00000 12.54 0.00000 12.54	22 # 23 # 24 # 25 # 26 # 27 # 28 # 29 # 30 # 31 # 32 #	VSTEP: 0.25000 NCOLS_ODD: 189 NCOLS_EVEN: 18 NROWS: 201 OPERATOR: Ad SAMPLEID: SCANID: 8.00900 12.566	13 14 15 16 17 18 19 20 21 22 23	<pre>% UniterSanities # hklFamilies # hklFamilies # hklFamilies # kklFamilies # Categories 0 0 0 # GRID: SqrGrid # XSTEP: 0.250000 # YSTEP: 0.250000</pre>	4 1 1 1 2 0 0 2 2 0 3 1 1 9 0 8	1 0.000000 1 0.000000 1 0.000000 1 0.000000 1 0.000000	10.000	
				34 35	8.08008 12.566 8.08008 12.566	24 9 25 9 27 9 28 9 30 9 31 9 32 9 33 3 34 35	<pre># NCOLS_EVEN: 189 # NROWS: 281 # # OPERATOR: Admi # SAMPLEID: # # SCANID: # 0.08000 12.56637 0.08000 12.56637</pre>	inistrato 7 12.566 7 12.566 7 12.566	37 8.68060 37 8.25009 37 8.25009	6.88988 8.88988 8.88888 8.88888	8.0 -1.08 8.0 -1.08 8.0 -1.08

🥒 🕘 🕚 Si	mallIN100.h5ebsd						
v 🙀 /							
🔻 📁 1							
🔻 📁 Data							
Cor	nfidence Index						
H Fit	an Quality						
Pha							
Phi							
Phi	1						
📳 Phi	2						
SEM Signal X Position							
						H YP	osition
Header	r						
Data							
Header	r						
► 🔰 100							
101	101						
102	102						
103							
▶ □ 104							
105							
107							
108							
Þ 📁 109							
G	eneral Attributes						
Name	HDF5 Dataset						
Path	/1/Header/OriginalHeader						
Туре							
Object ID	14593						
No. of Dimension(s)	1						
Dimensions Size(s)	677						

H5EBSD: Moving an Industry to HDF5

• Timeline

- \circ 2013 First conversations with EDAX, example code sent to EDAX
- 2014 EDAX Updated release with support for writing HDF5 files
- 2016 Bruker has tool to convert from .bcf (proprietary format) to HDF5
- \circ 2019 Oxford Instruments starts to use HDF5 as a supported file format

- Positive feedback from EBSD users regarding the changes
 - Easier to I/O data to/from their custom data analysis programs or control systems

Current Trends in Open Source

- Recent trends with some open source companies is to put the source/binaries behind a "wall".
 - Paid wall, subscription wall, free account wall

- These walls stop automated scripts in their tracks
 - DREAM3D CI broke, DREAM3D SDK Build Scripts broke.
 - BQ mirrored the HDF5 sources/binaries for DREAM.3D's use. All that tracking information was lost to The HDF Group
 - DREAM3D seriously considered moving away from HDF5
- We need better ways of financially supporting companies that produce open source software

HDF5: Open Discussions

• The HDF Group moving to more open development

- Enlightening discussion on the HDF Forum.
- Helped to understand the issues that The HDF Group were/are facing

• Repositories hosted on GitHub

- https://github.com/HDFGroup/hdf5
- Submit bugs/feature requests/code through the "Issues" area
- Standard PR (Pull Release) workflow
- Binaries easily downloaded from www.hdfgroup.com
 - <u>https://www.hdfgroup.org/downloads/hdf5/</u>
- Downloads help HDF Group make a case for continued support from funding agencies

Contributing & Helping HDF5 Ecosystem

- If you are using HDF5 consider the value proposition that HDF5 has brought to your project.
- Consider getting paid support/consulting from The HDF Group
 - However small it might be
- If you have projects/proposals where data storage comes into play, talk to The HDF Group about being a partner/sub on your contract
 - This takes longer term planning and discussions with the groups for whom you work
 - Start those discussions now.
- Most people think that giving back is fixing a bug in code
- Any aspect of development can be a target for your efforts
 - Code, Tests, Documentation, build bots
 - All of these things can help

Takeaways

- HDF5 saves developer time
- Large passionate community of HDF5 users/developers
- Fosters collaboration between research groups
- Be advocates of HDF5 and introduce it into new industries
- HDF5 is not *free* to develop, although it is *free* to use
- You should consider using HDF5 Group on your next project
- The HDF Group are some of the best developers that I have had the pleasure of interacting with.

Setting the context...

• BlueQuartz Software

- 3 Full Time, 3 part time
- Primarily funding streams are from DoD sources
- All of our software has been open source
- Budgets are tight and funding is even tighter
- Finding funding is sometimes difficult for your own company, but consider the value proposition of HDF5 and your own project(s)
- Strong advocate for HDF5 since 2005'ish