An 1/0 Study of ECP Applications

Chen Wang

Elena Pourmal
cwang@hdfgroup.org
epourmal@hdfgroup.org

1 INTRODUCTION

We studied and analysed the I/O patterns of four ECP applications
and five HACC-IO benchmarks. Table 1 gives brief descriptions of
those applications.

In this paper, we describe in details the steps of analyzing and
tuning the HACC-IO benchmarks. We illustrate the impact of dif-
ferent access patterns, stripe settings and HDF5 metadata. We also
compare the five benchmarks on two different parallel file systems,
Lustre and GPFS. We show that HDF5 with proper optimizations
can catch up the pure MPI-IO implementations.

Another goal of this paper is to understand the I/O behaviour
of ECP applications and provide a systematic way to profiling and
tuning the I/O performance. We mainly used two I/O profiling
tools, Darshan [3] and Recorder [6] to conduct this study. We also
made suggestions for each application on how to avoid undesired
behaviours and how to further improve the I/O performance. In
Section 4, we discuss the observations of for ECP applications.

1.1 Summary of observations and suggestions

We summary below the observations and some unexpected be-
haviours we found for each application along with the suggestions
on how to fix them. Detailed results and analysis can be found in
Section 3 and Section 4.

o FLASH: Unnecessary HDF5 metadata operations H5Acreate (),
H5Aopen () and H5Aclose () are used during every checkpointing
step. Those operations can be expensive especially when running
a large number of iterations. This can be easily fixed at the price
of losing some code modularity.

o NWChem: File-per-process patterns are found for writing local
temporary files. This is undesired and will cause a lot of pres-
sures on parallel file systems for large scale runs. Conflicting
patterns are found for the runtime database file, which can lead
to consistency issues when running on non-POSIX file systems.

e Chombo: The Same file-per-process pattern is observed for
Chombo too. Moreover, Chombo by default uses independent
I/O to write the final result to a shared HDF5 file. Depends on the
problem scale and underlying file system configurations, collec-
tive I/O can be enabled to further optimize the I/O performance.

o QOMCPack: One unexpected pattern is found for checkpoint
files. QMCPACK overwrites the same checkpoint file for each
computation section. This can lead to an unrecoverable state if a
failure occurred during the checkpointing step.

o HACC-IO: HDF5 can use different data layout to achieve similar
MPI-IO access patterns. Stripe settings of the parallel file system
has a big impact on the write performance. Also the default
metadata header can greatly slow down the write performance.
However, carefully setting the alignment or metadata data block

size, HDF5 can deliver a similar performance as the pure MPI-IO
implementation.

In this paper, we use HACC-IO benchmarks as detailed example
to illustrate the process of analysing and tuning I/O performance.
In next section, we first introduce the five HACC-IO benchmarks
we created for this study and then describe the access patterns
exhibited by each of the benchmark. In Section 3, we present the
tuning parameters we explored and the impact of them on I/O
performance.

2 HACC-I0 BENCHMARKS

In this section, we describe the five benchmarks we created for this
study and the three access patterns exhibited by them. The same
access patterns can be found in other scientific applications too. So
some general advises and tuning methodologies should apply to
other applications as well.

In all benchmarks, all processors write 9 variables to a single
shared file and each variable has an identical size. Except for one
benchmark (which will discuss later), all variables are stored to-
gether in an one dimensional array where each element in the
array is a double-precision floating point value. The first two bench-
marks are called MPI Contiguous and MPI Interleaved and they are
implemented using pure MPI-IO. These two benchmarks serve as
the baseline for comparison with the HDF5 implementations. As
the names suggested, in MPI Contiguous benchmark, each proces-
sor writes each variable contiguously in the file whereas in MPI
Interleaved benchmark, each variable is written interleaved. The
code for writing variables is shown in Figure 1. The only difference
between them is how to calculate the offset for the next write. In
MPI Interleaved benchmark, the next write starts from where the
current write finished. In MPI Contiguous benchmark, the next
write starts from the current offset plus the variable size. Their
access patterns are shown in Figure 4(a) and (b). From the view a
local processor, the nine writes are contiguous. However, from the
perspective of each variable, the writes are interleaved (in fact they
are evenly strided). Also note that Figure 1 shows only the code for
independent I/O for simplicity. Collective I/O is implemented using
MPI_File_write_at_all instead of MPI_File_write_at.

The rest three benchmarks are implemented using the HDF5
library, namely HDF5 Individual, HDF5 Multi and HDF5 Compound.

HDF5 Individual benchmark uses the most common way to write
multiple variables, with each variable as an individual dataset in
the HDF5 representation. In the end, the output HDF5 file has one
root group which contains nine separate dataset. The I/O part of
the code is shown in Figure 2. This benchmark achieves the same
access pattern as MPI Contiguous, as shown in Figure 4(a).

Chen Wang and Elena Pourmal

Table 1: List of studied applications

App Version | Description

Flash [1] 44

A component-based multi-physics scientific simulation software package.

NWChem [5] 6.8.1

Open source high-performance computational chemistry.

Chombo [2] 3.2.7

Software for adaptive solutions of partial differential equations.

OMCPACK [4] | 3.7.0

Electronic structure code that implements numerous Quantum Monte Carlo (QMC) algorithms.

G| W DN =] 3

HACC-IO 1.0

Five HACC I/O benchmarks adapted from GenericlO (https://xgitlab.cels.anl.gov/hacc/genericio).

// Benchmark 1. MPI Interleaved
for (i=0; i < NUM_VARS; i++) {

MPI_File write_at(fh, mpi_off, &writedata[i*NUM_DOUBLES_PER_VAR_PER_RANK], NUM_DOUBLES_PER_VAR_PER_RANK,

MPI_DOUBLE, &mpi_stat);
mpi_off += BUF_SIZE_PER_VAR/mpi_size;
}

// Benchmark 2. MPI Contiguous
for (i=@; i < NUM_VARS; i++) {

// Move to the end of the current write.

MPI_File write at(fh, mpi_off, &writedata[i*NUM_DOUBLES_PER_VAR_PER_RANK], NUM_DOUBLES_PER_VAR_PER_RANK,

MPI_DOUBLE, &mpi_stat);
mpi_off += BUF_SIZE_PER_VAR;

// Move to the position of next variable

Figure 1: The code of writing nine variables in two MPI benchmarks.

HDF5 Multi benchmark has the same data representation as
HDF5 Individual, and they also share the same code for I/O (Fig-
ure 2). The difference exists only in the dataset creation phase.
HDF5 Multi uses an under-development API for creating the nine
dataset. This new API tells the HDF5 library to use a different data
layout to store the dataset, which can result in a MPI Interleaved
access pattern as shown in Figure 4(b).

HDF5 Compound is different from the above-mentioned four
implementations. In this benchmark, each process holds one data
structure that stores all nine local variables. In HDF5, it is also called
the compound datatype. The creation code is shown in Figure 3.
With this representation, each processor performs only one write
during the I/O phase, which is in contrast of nine writes required
by the other four benchmarks.

3 HACC-IO EXPERIMENTS
3.1 Methodology

There are many tuning parameters one can explore to optimize
I/O performance. It is unrealistic to try every combination. In this
study, we fix the scale and size of our problem and focus more on
tuning HDF5 to catch up the MPI baseline. To further narrow down
the analysis, we only compare the time for the actual I/O func-
tions of different benchmarks, i.e., we do not include the time for
open, close, fsync and other operations. To be specific, for two MPI
benchmarks, we measure the time spent on MPI_File_write_at
(or MPI_File_write_at_all for collective I/O) function and for
HDF5 benchmarks, we timing only the H5Dwrite function. We
implemented HDF5 benchmarks in a way that metadata writes oc-
curred only after the dataset has been written. So the comparison is
fair as both implementations write the same amount of data. Finally,
we report the write bandwidth for easy comparison. The bandwidth
is calculated by: BW = §/(te — t5), where S is the total size of nine

variables and t, and t; are the latest I/O finish time and the earliest
I/O start time.

One guiding principle we tried to follow throughout the experi-
ments is to keep the interference due to different tuning parameters
at a minimum level. In other words, we tried to vary only one tuning
knob at a time to see the impact of it. In the following sections, we
will start by testing the collective I/O and then move on to parallel
file system settings. Next, we report the performance slow down
caused by HDF5 metadata and give suggestions on how to mitigate
it. Finally, we show that with proper optimizations HDF5 can catch
up to the pure MPI-IO performance.

3.2 Setup

Experiments are conducted on Quartz and Lassen at LLNL. Each
compute node of Quartz is equipped with an Intel Xeon E5-2695
CPU which has 36 cores. All nodes are connected via Intel Omni-
Path. Lassen is similar to the Sierra System. The CPU of Lassen’s
compute node is IBM Power 9 with 44 cores. Another major dif-
ference between the two systems and also the reason we choose
these two systems is that they deployed two different parallel file
systems: Lustre on Quartz and GPFS on Lassen.

Since two systems have different CPU architectures, they also
come with their own vendor MPI implementations. Therefore, on
Quartz all benchmarks are compiled with Intel MPI and on Lassen
they are compiled with IBM MPL The HDF5 we used is an internal
and in-develop version (1.13), which provides the new Multi API.

As mentioned before, the problem size and scale are fixed. Each
variable is 8GB, i.e., IM doubles. The total file size (ignoring meta-
data and alignment) is thus 72GB. We run all experiments on 32
compute nodes with 32 MPI processes per node - a total of 1024
MPI processes. All variables are distributed evenly across all MPI

An 1/0O Study of ECP Applications

// Benchmark 3, 4: HDF5 Individual and HDF5 Multi

double *writedata = (double*) malloc(BUF_SIZE_PER_VAR/mpi_size*NUM_VARS);

for (i = @; i < NUM_VARS; i++) {

dset_ids[i] = H5Dopen(file_id, DATASETNAME[i], H5P_DEFAULT);
mem_space_ids[i] = HS5Screate simple(1, mem_dims, NULL);
file_space_ids[i] = H5Screate_simple(l, file_dims, NULL);

// Select column of elements in the file dataset

file_start[®] = mpi_rank * NUM_DOUBLES_PER_VAR_PER_RANK;

file_count[@] = NUM_DOUBLES_PER_VAR_PER_RANK;

H5Sselect hyperslab(file_space_ids[i], HS5S_SELECT_SET, file_start, NULL, file_ count, NULL);

// Select elements in the memory buffer
mem_start[@] = i * NUM_DOUBLES_PER_VAR_PER_RANK;
mem_count[@] = NUM_DOUBLES_PER_VAR_PER_RANK;

H5Sselect_hyperslab(mem_space_ids[1], HS5S_SELECT_SET, mem_start, NULL, mem_count, NULL);

H5Dwrite(dset_ids[i], HS5T_NATIVE_DOUBLE, mem_space_ids[i], file_space_ids[i], dxfer_plist_id, writedata);

Figure 2: The code of writing nine dataset in HDF5 Individual and HDF5 Multi benchmarks

typedef struct {

double id;

double mask; H5Tinsert (Hmemtype,
double x; H5Tinsert (Hmemtype,
double y; H5Tinsert (Hmemtype,
double z; HS5Tinsert (Hmemtype,
double vx; H5Tinsert (Hmemtype,
double vy; H5Tinsert (Hmemtype,

double vz;;
double phi;
} hacc_t;

H5Tinsert (Hmemtype,
H5Tinsert (Hmemtype,
H5Tinsert (Hmemtype,

// Benchmark 5: HDF5 Compound datatype
Hmemtype = HS5Tcreate (HS5T_COMPOUND, sizeof (hacc_t));

"id", HOFFSET (hacc_t, id), H5T_NATIVE_DOUBLE);
"mask", HOFFSET (hacc_t, mask), HST_NATIVE_DOUBLE);
"x", HOFFSET (hacc_t, x), HS5T_NATIVE_DOUBLE);

"y", HOFFSET (hacc_t, y), HST_NATIVE_DOUBLE);

"z", HOFFSET (hacc_t, z), H5T_NATIVE_DOUBLE);

"vx", HOFFSET (hacc_t, vx), H5T_NATIVE_DOUBLE);
"vy", HOFFSET (hacc_t, vy), H5T_NATIVE_DOUBLE);
"vz", HOFFSET (hacc_t, vz), H5T_NATIVE_DOUBLE);
"phi", HOFFSET (hacc_t, phi), H5T_NATIVE_DOUBLE);

mem_dims[@] = NUM_HDATA_PER_RANK;

file_dims[@] = mem_dims[@]*mpi_size;

file_space_id = H5Screate_simple(1l, file_dims, NULL);

dset_id = H5Dcreate2(file_id, "ALLVAR", Hmemtype, file_space_id, H5P_DEFAULT, dcpl_id,

H5P_DEFAULT);

Figure 3: The code of creating the compound datatype

ranks so each processor holds 8MB for each variable. In total each
processor attributes 72MB data to the output file.

3.3 Results

3.3.1 Collective vs. Independent. Collective I/O is an important
optimization in that it combines I/O requests into bigger blocks so
that reads/writes to the I/O system will be larger. It is especially
useful when the writes are small or non-contiguous. Combing non-
contiguous I/O into contiguous I/O can effectively reduce the disk
seek time. Also, collective I/O reduces the total number of I/0O
requests that can reduce the pressure on parallel file systems.
However, collective I/O is not always advantageous because
sometimes the overhead of collective calls outweighs their benefits.
And this is also what we observed in our case. In our benchmarks,
each write is at least SMB (72MB for HDF5 Compound) which is
big enough to amortize the disk seek time. Since the file is striped
into multiple storage targets, the writes to one target are already
contiguous. As we can see from Table 2, collective I/O still signifi-
cantly reduced the total I/O time, from 1346 seconds to 70 seconds.
However, the cost for collective calls is too high - we spent over

Collective Total time (s)
MPI_write_at_all 4354.71
write 70.31
Independent Total time (s)
MPI_write_at 1346.97
write 1346.79

Table 2: Function cost of collective I/O and independent I/O

4,000 seconds on MPI_File_write_at_all. These results are col-
lected from the MPI Contiguous benchmark running on Lustre.
Other benchmarks have similar results. Thus, in the following ex-
periments, we use only the independent I/O.

3.3.2 Impact of stripe size. This experiment is conducted only on
Lustre since on GPFS users are not able to change the stripe settings.
We fixed the stripe count to 32 which is the number of compute
nodes we use. The performance against different stripe sizes is
shown in Figure 5. We show here only the HDF5 benchmarks to

= =
e c2
c c
=} o
r F
2 2
= =

Chen Wang and Elena Pourmal

part
1024
part
4

File Location (offset)

part
3
part
2
part
1

rank0 rank1 rank2 rank3 rank 0 rank 1

(a) MPI Contiguous / HDF5 Individual

rank 2

(b) MPI Interleaved / HDF5 Multi

rank 3 rank0 rank1 rank2 rank3

(c) HDF5 Compound

Figure 4: Assume no HDF5 metadata operations, the five HACC-IO benchmarks exhibit three different access patterns. MPI
Contiguous and HDF5 Individual have the same access patterns (a). The second access pattern (b) can be achieved by MPI
Interleaved or HDF5 Multi. In the last one, each process performs only one write and this access pattern is shown only by

HDF5 Compound.

make the graph less crowded; the comparison between HDF5 bench-
marks and MPI benchmarks is given in later sections.

On Lustre, the best performance is achieved by using HDF5
Individual and setting the stripe size to 128MB. One interesting
finding is that HDF5 Individual and HDF5 Multi does not perform
well on 36M stripe size. In that case, HDF5 Compound can deliver
a higher write bandwidth. We use HDF5 Multi as the example to
analyze the access pattern. Again, ignoring the metadata data, the
access pattern of HDF5 Multi looks like Figure 6, which is exactly the
same as MPI Interleaved. In this access pattern, each process writes
72MB, a half of it goes to one storage target i and the other half goes
to another storage target i + 1. Since all writes are blocking calls,
writes to u; can not start until writes to v has finished. So if we
look at the first 1024 writes to v1, we can see that they only utilized
a half of available storage targets, i.e., 1,3, 5, ..., 31. Moreover, the
36MB stripe size can not be divided by the write size (8MB), so the
fifth variable on each process will be split into two different storage
targets. Things become even worse when there is a metadata header
at the beginning of the file, which we will discuss in next section.

Overall, the best strip setting depends on the access patterns and
also the problem size and problem scale. Once the access pattern is
known, we can perform a similar analysis to get the optimal stripe
settings.

3.3.3 Impact of the metadata header. Figure 7 and Figure 8 depict
the HDF5 access patterns that include a 2KB header. This 2KB
header is reserved by default by HDF5 to keep metadata information.
Due to this header, now in Figure 8, not only s, but also vg will be
split into two different storage targets.

To study the exact impact of an offset gap on the performance,
we modified the MPI benchmarks to start from a specific offset in-
stead of zero. The outcomes are two folds: (1) it helps us understand
how much performance penalty we pay for the 2KB header. (2) we

Write bandwidth (MB/s) with different stripe sizes
= HDF5 Individual HDF5 Compound HDF5 Multi

128M 512M
Stipe size

45000
40000
35000

30000
25000
20000
15000
10000
5000
0 _— _—
36M 2M

Figure 5: Write bandwidth on Lustre with different stripe
sizes

can decide a better gap size to use as the alignment size or metadata
block size for HDF5. The results are given in Figure 9 and Figure 10
for Lustre and GPFS respectively. We use the best benchmark (Sec-
tion 3.3.4) for each file system to conduct the experiments, i.e., MPI
Contiguous on Lustre and MPI Interleaved on GPFS. It can be seen
that, offset gaps have a more severe impact on GPFS than Lustre.
In both systems, a 2KB gap is certainly bad for the performance.
Also on both systems, it seems that starting from 32MB or 128MB
can deliver a even better performance than starting from zero. The
reason for this needs further exploration and we leave it as our
further work.

With this information, we are able to optimize HDF5 benchmarks
to hide or mitigate the penalty of the metadata header. There are
three ways to achieve such a goal:

An 1/0O Study of ECP Applications

A
v9
OSsT4
B3|
(2]
=
o
s v2 0OST3 First 1024 concun"ent v1 writes,
= Only a half of available OSTs
g Vi (1,3, 5, ...) are used
-
K
[in v9
OST2
Stripe Size 36M
v 0ST1
vi

rank 0 rank

A\ 2

1 rank2 rank3

Figure 6: MPI Interleaved with 36MB stripe size

Stripe

File Location (offset)

OST1
every 4th write will
be split into two OSTs vi;

(—Jﬁ vi

Size 36M vi

vi

|

\l

v,

\l

2K

vi | (8M) 0ST2

A\ 4

rank Orank 1rank 2 rank 3

Figure 7: HDF5 Individual with 36MB stripe size

A

]
(2}
=
o
s Due to the 2K header,
= v4 and v9 are split into 2 OSTs.
S v9
% Stripe Size 36M
T OST2

v2

" Stripe Size 36M

OST1
2K R
rank0 rank1 rank2 rank3

Figure 8: HDF5 Multi with 36M stripe size

MPI Contiguous on Lustre
60000

50000

40000
30000
20000
10000
0

2KB

4MB 8MB 32MB 128MB
lStartmg Offset

Figure 9: Impact of header on Lustre

MPI Interleaved on GPFS
200000

180000
160000
140000
120000
100000
80000
60000
40000

20000 I l .
0

8KB 4MB 8MB 32MB 128MB
] Startmg Offset

Figure 10: Impact of header on GPFS

o Use a split driver, which outputs metadata and raw data into two
separate files. It requires minor codes change but it produces two
files which may not be what users want.

e Use H5Pset_alignment. This call sets an alignment for every
data write. For example, we could set a 32MB alignment to make
sure the first data block starts from 32MB. However, there is
another issue that this method can not handle: if the metadata ex-
ceeds 2KB, they probably will be scattered across the file, causing
"holes" between data chunks.

e Use H5Pset_meta_block_size. This API changes the default
reserved size for the metadata block. By setting a larger and
better size, we can fit all metadata into the begging of the file
and at the same time, the raw data will start from a desired offset.
We use this method in next section.

3.3.4 Comparison of five benchmarks. So far we have tested with
collective I/O, independent I/O, different stripe sizes and different
header sizes. In this section, we mainly have two objectives: (1) find
the best I/O access pattern for two different parallel file systems;
(2) Optimize HDFS5 to catch up the MPI implementations.

As we discussed from last section, HDF5 metadata header (2KB
offset gap) could greatly hurt the performance. However, we can
use H5Pset_meta_block_size to reduce this performance penalty.
For different parallel file system systems, this metadata block size
is not always the same. The metadata block size should be as small
as possible since it introduces wasted space in the file. We set it

Write Bandwidth on Lustre
46000
44000
42000
40000
38000
36000
34000
32000
30000
MPI HDF5 MPI HDF5 Multi HDF5

Contiguous Individual Interleaved Compound

Figure 11: Write bandwidth on Lustre. The metadata block
size is 8M for HDF5.

Write Bandwidth on GPFS

400000
350000
300000
250000
200000
150000
100000

50000

0 — —

MPI HDFS MPI HDF5 Multi HDF5
Contiguous Individual Interleaved Compound

Figure 12: Write bandwidth on GPFS. The metadata block
size is 32M for HDF5.

to 8MB on Lustre and 32MB on GPFS according to Figure 9 and
Figure 10.

The results are shown in Figure 11 and Figure 12. For Lustre
experiments we set the stripe size to 128MB as it gives the best
performance as discussed in Section 3.3.2. Again, with this strip
setting, MPI Contiguous delivers the best performance and with
a 8MB metadata block size, HDF5 Individual is able to achieve a
similar performance. On GPFS, we are not able to change the stripe
size (or block size), which is 32MB on Lassen. With such a small
stripe size, MPI Interleaved out performs MPI Contiguous. HDF5
Multi has exactly the same access pattern as MPI Interleaved. With
a 32MB metadata block size, it even achieves better write bandwidth
than MPI Interleaved. The improve over MPI Interleaved is mainly
due to the 32MB offset shift as mentioned in Section 3.3.3.

4 ECP APPLICATIONS

4.1 Setup

All four applications are compiled with Intel Compiler 2019 and
Intel MPI 2018. QMCPACK and HACC-IO uses HDF5 1.12.0 whereas
FALSH and Chombo are compiled with HDF5 1.8.20. NWChem uses
only POSIX for I/O. All experiments are conducted on Quartz at
LLNL. Unless specified otherwise, all applications run on 8 nodes
with 8 processes per node. The stripe count and stripe size of Lustre
are 8 and 4MB respectively.

Chen Wang and Elena Pourmal

sedov_hdf5 chk 0003

2.000e+7 J w— read

] — Write
1.500e+7 J
-]
& b
% 1.000e+7 J
5.000e+6
0.000e+0 J

T
0 10 20 30 40 50 60

Ranik

Figure 13: FLASH: access pattern of independent I/O

sedov_hdf5 chk 0003

] = read
2.000e4+6 4]
] - WTite
1.500846
43 4
g 4
5]]
QO 1.000e+6 4
5.000e+5 J
0.000e+0 J
T
0 5 10 15 20 25

Ranik

Figure 14: FLASH: access pattern of collective I/O

4.2 FLASH

The case we run is a 2D Sedov explosion simulation, with an uni-
fied grid size 512 X 512. We run it for 100 iterations and output
checkpoints at a frequency of 20 iterations. Figure 14 shows the
access patterns of one checkpoint file written using independent
/0. In this pattern, each rank writes its local data to a shared HDF5
file, which naturally leads to a large number of small writes. In
contrast, Figure 13 shows the access pattern with collective I/O
enabled, where rank 0 handles all data writes and the metadata are
written in a round-robin matter (default behaviour of HDF5). Note
that even though we set the stripe count to 8, ROMIO still decides
to use only one rank as the aggregator.

Figure 15 shows the count of the most visited functions. We found
that the number of H5Aclose() call is twice as that of H5Aopen(),
and there is never a H5Aread() call. This is a strange pattern be-
cause normally we would create an attribute, then write to it and
close it at the end. So the number of create, write and close should
be the same. But in FLASH, in order to main code modularity, the
attributes are created and closed first. Then at a latter time, they are
opened, written and closed again. Since the HDF5 open and close

An 1/0O Study of ECP Applications

H5Dget _type 3584
close 879
H5Tcreate 608
H58select_hyperslab 4720
HS5Tcopy 6144
H5Sselect none 7056
MPI_Barrier 8000
H5Dwrite 8272
H5Aopen 0216
H5Acreatel 9216
HiAwrite 9216
MPI Reduce 10680
H5Dereatel 13312
H5Pclose 13312
HiPcreate 13312
HiTinsert 13824
MPI_Comm_size 14016
MPI_Allreduce 14784
H5Tclose 17920
H3Aclose 18432
H5Dopen1 25600
MPI_Sendrecv 25856
H5Screate_simple 30720
MPI_Comm_rank 31168
H5Sclose 4304
H3Delose 8912
MPI Boast 84672
MPI File write at 205358
Iseek 295446
write 296351

Function

T — T — Tt T Tt
1073 1074 1075 1076

Count

Figure 15: FLASH: the most visited functions counter

calls are both collective calls, this pattern may lead to performance
issues especially when running at a large scale.

4.3 NWChem

We run NWChen using a water molecule sample input (h20_scf.nw).
During the computation, each rank writes to a local temporary file
(named h2o0_scf.junk.[RANK]), which is not a desired behaviour for
large scale runs. For example, a million-cores run means creating
and writing a million files within one directory at the same time,
which is very stressful for parallel file systems.

Moreover, NWChem performs overlapping (actually conflicting)
accesses to an runtime database file (h2o_scf.db) as shown in Fig-
ure 16. This file is only accessed by rank 0 but we observed both
write-after-write, read-after-write and write-after-read patterns.
Application users need to be careful when choosing parallel file sys-
tems because on file systems that support weak consistency models
(e.g., BurstFS [7]), this conflicting pattern may cause consistency
issues.

4.4 Chombo

Chombo has a similar issue as NWChem: it uses a file-per-process
write pattern for each local output. Again, this could lead to scalabil-
ity issues. Other than that, HDF5 is used to save the final result. The
access patterns of each rank is shown in Figure 17. Each rank writes
its local data to a shared file, and this pattern can be optimized by
using collective I/O.

45 QMCPACK

For QMCPACK, we run a short diffusion Monte Carlo calculation of
a water molecule. It runs on 16 ranks and writes out 5 checkpoint

h2o scf.db
1.500e+6
N — read
] — write
1.000e+6
.
5 |
& |
= |
5.000e+5
0.000e+0 - 1
Tttt
2 4 6 8

Time

Figure 16: NWChem: conflicting patterns observed on file
h2o_scf.db

vcPoissonOut.3d. hdf5

2000847 3 — o~
1 = e - m read
4 - .
4 - - = WTlte
3.0008+7 J - - -
+a] = - - - - -
2 1 - - - -
i 2.000e+7 J __* - - L =
© 1 - -) - -
1.000e+7 4 - _ = . -
0.000e+0 1 = - - -
e
0 10 20 30 40 50 60

Ranik

Figure 17: Chombo: HDF5 access pattern

files. Figure 18 depicts the access pattern of one checkpoint file over
time.

H20.s002.random.h5
2.000e+6

1.500e+6

Offset

1.000e+6

3.000e+5

0.000e+0

20 30 40 50 60 70 80 an
Time

Figure 18: QMCPACK: overwrite the same checkpoint

Instead of writing to a new checkpoint file at every checkpoint
step, QMCPACK overwrites the same checkpoint file. This is a
dangerous pattern as failures may occur during the checkpoint
step, and if an failure happens, the checkpoint file will be corrupted
and the previous checkpoint will also be lost.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences under
Award Number DE-AC05-000R22725.

Disclaimer: This report was prepared as an account of work spon-
sored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or oth-
erwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

Chen Wang and Elena Pourmal

REFERENCES

[1] 2019. Flash Center for Computational Science. http://flash.uchicago.edu/site/
flashcode

[2] Mark Adams, Peter O Schwartz, Hans Johansen, Phillip Colella, Terry J Ligocki,
Dan Martin, ND Keen, Dan Graves, D Modiano, Brian Van Straalen, et al. 2015.
Chombo software package for amr applications-design document. Technical Report.

[3] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-
ine Riley. 2009. 24/7 characterization of petascale I/O workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1-10.

[4] Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chandler
Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele
Casula, David M Ceperley, Simone Chiesa, Bryan K Clark, Raymond C Clay, Kris T
Delaney, Mark Dewing, Kenneth P Esler, Hongxia Hao, Olle Heinonen, Paul R C
Kent, Jaron T Krogel, Ilkka Kyldnpaa, Ying Wai Li, M Graham Lopez, Ye Luo,
Fionn D Malone, Richard M Martin, Amrita Mathuriya, Jeremy McMinis, Cody A
Melton, Lubos Mitas, Miguel A Morales, Eric Neuscamman, William D Parker,
Sergio D Pineda Flores, Nichols A Romero, Brenda M Rubenstein, Jacqueline A R
Shea, Hyeondeok Shin, Luke Shulenburger, Andreas F Tillack, Joshua P Townsend,
Norm M Tubman, Brett Van Der Goetz, Jordan E Vincent, D ChangMo Yang,
Yubo Yang, Shuai Zhang, and Luning Zhao. 2018. QMCPACK: an open source
ab initio quantum Monte Carlo package for the electronic structure of atoms,
molecules and solids. Journal of Physics: Condensed Matter 30, 19 (apr 2018),
195901. https://doi.org/10.1088/1361-648x/aab9c3

[5] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,
Hubertus JJ Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo Apra, Theresa L
Windus, et al. 2010. NWChem: A comprehensive and scalable open-source solution
for large scale molecular simulations. Computer Physics Communications 181, 9
(2010), 1477-1489.

[6] Chen Wang, Jinghan Sun, K Mohror, and E Gonsiorowski. 2020. Recorder 2.0:
Efficient Parallel I/O Tracing and Analysis. In The IEEE International Workshop on
High-Performance Storage.

[7] Teng Wang, W Yu, K Sato, A Moody, and K Mohror. 2016. BurstFS: A Distributed
Burst Buffer File System for Scientific Applications. Technical Report. Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States).

