HDF5 Features for Managing Experimental
and Observational Data and Superfacility

Quincey Koziol, Suren Byna, and John Mainzer

Lawrence Berkeley Laboratory, The HDF Group, and Texas Tech
University

Team members: Houjun Tang, Tony Li, Gerd Heber, Scot Breitenfeld, Jake Smith, Wei
Zhang, Chenxu Niu, and Yong Chen

Experimental and Observational Data - Use cases

Solved structures of the Fc tail domain of the IgG
antibody, wild type (WT) and engineered (A801) --

Resolution g > g . R Resolution
before 2013 = A" atpresent lllustration courtesy of N. Sauter/Berkeley Lab lllustration courtesy of Chang-Han Lee, UT Austin
(Data taken with the LCLS X-ray laser)

lllustration courtesy of Martin Hogborn/The Royal Swedish

Academy of Sciences LCLS-Il upgrade will have high ALS data production rates are
NCEM is working on cryoEM (electron repetition rate (1-MHz) and very high anticipated to reach 80 GB/s (1.5
microscopy at cryogenic temperatures), data throughput (100GB/s) PB/month) over its lifetime. SPOT suite
n[le”qu:i;ate high-res images at high HDFS5 regs: Remote / realtime file transfer uses HDFS for managing data.
w/ low latency SWMR, multiple writers - HDF5 reqs: revising data types / schema
multiple readers (MWMR), sparse while keeping the original data unmodified,

HDF5 reqgs: Remote / realtime file

transfer, multiple writers - multiple representations, efficient variable length manage metadata of several HDF5 files
readers,(MWMR) and sparse data representations, avoid file corruption (containers), querying metadata within
’ P on crash, data reduction via compression HDF5 containers, ...

representations and removing uninteresting data, ...

Examples of experimental and observational data use case - LCLS

HDF5 watchers running on
SLAC DTNs: read live files
from DRP and send them
over ESnet

HDF5 receiver running
on NERSC DTNs

HDF5 generator:
reads original file and
writes multiple files in
parallel

8_

LCLS-I HDF5 file
(detector based
schema)

Set of HDF5 files recreated at
NERSC on Lustre as complete
virtual data set

Live HDF5 files:

simulates files written by LCLS-Il DRP compressor
nodes (det based schema) or DRP event builder
nodes (event based schema)

Image credit: LCLS from SLAC

Examples of experimental and observational data use case - ALS

Metadata
(beamline & user)

\,/gﬁ

~

[
[

Raw Data From
Detector

HDF5 Suitcase

ALS

ADVANCED
LIGHT SOURCE

.v,’

Global

Filesystem Archive

Analysis on
Carver/Hopper/
Edison

S ALS User Scientist
HPSS
- I

Image credit: Spot Suite slides by Craig Tull, LBNL, http://spot.nersc.gov/

Requirements of EOD use cases

o Requirements of NCEM data

o Support for sparse data management
o Support for remote streaming synchronization
o Multiple producers and multiple consumers of data

o Requirements of LCLS-Il data

o Handle multiple producers and multiple consumers of data
o Support remote streaming synchronization
o Support for variable length modes of data

o Requirements of ALS data

o Extend data models to support changes in data and data schemas
o Metadata and provenance management for multiple HDF5 containers

EOD-Focused Features in Development

Splitter virtual file driver (VFD) - Split data to different files

Mirror VFD - Replicate HDF5 files in different systems (“streaming rsync”)
o Probably should be called “client-server” VFD

Sparse Data management

h5prov - Pass-through virtual object layer (VOL) to capture provenance
Onion VED - Version control on HDF5 files

MIQS - Metadata and indexing for self-describing formats

XTC2 VOL connector - Terminal VOL connector, to read XTC2 format files
Variable length data storage improvements

Streaming API routines - Efficient support for adding records to datasets

Splitter and Mirror VFDs for remote streaming sync

o« Remote streaming synchronization P
Use case: LCLS-2 at SLAC will need to write !
HDF5 files locally and simultaneously L
duplicate the files on Cori at NERSC ¢ , T
Developed Splitter and Mirror Virtual File = e e
Drivers (VFD) . vio
Mirror-Writer can send data to a receiverina zem - Iecz)
different system o Host File System

Testing in progress for transferring data
between SLAC and NERSC

Credit: From John Mainzer's RFC; More on this in John’s talk later.

Sparse data management

A large number of science datasets are sparse
There is no concept of sparseness in the HDF5 data model

A few workarounds

o Chunked layout + Compression, Mimic sparse formats
Issues with workarounds: hard to determine “written-to”
entries, doesn'’t preserve array abstraction

|dea: Sparse chunks
o “Decorated” with a selection that marks the positions of non-fill values
o Preserves array abstraction and provides space savings

Initial evaluation of sparse chunks
o Observed read / write speedups and space compression

John, Mainzer, Neil Fortner, Gerd Heber, Elena Pourmal, Quincey Koziol, Suren Byna, and Marc Paterno, “Sparse Data
Management in HDF5”, 1st IEEE/ACM Annual Workshop on Large-scale Experiment-in-the-Loop Computing,
XLOOP@SC19, 2019

ROI

10

Write Speedup Factor

—
sc1 sc2 sc4
Space Compression Factor

sC1 sC2 sCa

Provenance Capture with hSprov VOL connector

e hb5prov Virtual Object Layer (VOL) connector

e Collects: ot
o U ser l App 'O requests
. . HDF5 API|
o Application
. Lt . Mapping
o Data - file, datasets within files
o Timestamps ety
o File operations: opens and closes }
. . Native VOL connector
o Dataset operations: reads and writes local write
. . . i I
m File (physical) offset, array (logical) offset virtua z:j;?wfr:' vou
e Use cases
o How many unique users and applications are using HDF5
. . . H5 file Provenance
o Data usage: Which files are used and is there a pattern? (Data, metadata)

o ldentifying patterns of HDF5 dataset usage to trigger prefetching d: File system
from parallel file systems

Tonglin Li, Quincey Koziol, Houjun Tang, Jialin Liu, and Suren Byna, “H5Prov: /0O Performance Analysis of Science Applications Using HDF5
File-level Provenance”, CUG 2019 - https://sdm.lbl.gov/~sbyna/research/papers/2019/201905-CUG-H5Prov-Provenance.pdf

revision

Onion VFD for version control T BN
= Py P |
Al B P
rre
(original) FEE

e ALS users require support for tracking modifications to
metadata attributes

¥ o)

e There are several requests for tracking modifications to an HDF5 file while
preserving or access to the file as it existed in the past

e Solution: Onion Virtual File Driver (VFD)

o The original file exists with data layered atop one another from an original file to
the most recent revision

e Each revision, once committed, cannot itself be modified — rather, a
subsequent revision must supply the amended content.

e Revision index to map locations in the logical file to the correct bytes in the
backing store

e Browsing revision is possible with a new HDF5 function - H5FDfctl

e Feature is in active development

Credit: From John Mainzer's RFC; More on this in John’s talk later.

MIQS: Metadata indexing and querying for self-describing files

e Self-describing file formats that store metadata along _ i‘fi?lz_;i'-'i:.'%"-’}?ii
with data, such as HDF5 and netCDF, are extensively (Anee Nemes)
used to store scientific data A PN

e Use case: ALS users require support for m;.“fgm;, Ny ts,;i'n;,x,,;iﬁ'gmvm,. |

[[T]

o Querying attribute data to find data objects SESSNESENSEN|EEEEEEEEE

e A typical approach is extracting the metadata and * ‘um(me T

storing it in a database A hybrid index for numeric values and
. . . string values of attributes
e To search directly on the metadata in HDF5 files,

400

313272

developed an in memory indexing and querying 1 . I
method that’s much faster than databases ; I

o Because MIQS indexes are in memory compared to MongoDB, -x-MongoDBLatency 47635 5207 9906 201351
MIQS is very fast (172,000X faster) B

Wei Zhang, Suren Byna, Houjun Tang, Brody Williams, and Yong Chen, "MIQS: Metadata Indexing and Querying Service for Self-Describing
File Formats", SC19, https://sdm.Ibl.gov/~sbyna/research/papers/2019/201911-EOD_HDF5_Metadata_Search-SC19.pdf

LLANA: SLAC-NERSC Superfacility Project

HDF5 Tasks:

e XTC2 VOL Connector
o Read-only VOL connector to access XTC2 data through HDF5 API

e Performance Enhancements to Streamed Data I/O
o “Streaming API” that streamlines appending records to datasets
e Variable-Length Data Storage Improvements

o “Hybrid chunk” storage that combines VL-data with fixed-data in each chunk
o “Stream-focused” chunk index,

XTC2 VOL Connector

Goal: Access XTC2 files from HDF5 applications

e Maps HDF5 data model to XTC2 file format

o A good example of using HDF5 VOL framework to access data in non-HDF5 files
e HDF5 Applications can transparently access data in XTC2 files, without

modifying code or even rebuilding
o Use environment variable to choose XTC2 VOL connector

e Available in the LCLS2 git repository:

o https://github.com/slac-Icls/Icls2/tree/dev_tony

https://github.com/slac-lcls/lcls2/tree/dev_tony

XTC2 VOL Connector

Goal: Access XTC2 files from HDF5 applications

e Maps HDF5 data model to XTC2 file format

o A good example of using HDF5 VOL framework to access data in non-HDF5 files
e HDF5 Applications can transparently access data in XTC2 files, without

modifying code or even rebuilding
o Use environment variable to choose XTC2 VOL connector

e Available in the LCLS2 git repository:

o https://github.com/slac-Icls/Icls2/tree/dev_tony

https://github.com/slac-lcls/lcls2/tree/dev_tony

Streaming API

Goal: Improve performance of
streamed access to dataset records

e Amortize “setup / teardown” cost of append
operations

e New “cursor” API routines:
o HS5Dcursor_create
o H5Dcursor_write_next / H5Dcursor_read_next
o H5Dcursor_close

Finish time in ms

Finish time in ms

Fixed-length append (int)
100000

m Baseline: HDF5 release
10000

m HDFS dev high level
Baseline

Baseline 1.5x
10.6x
1000 = HDFS dev lib level Lax
Baseline
100 1.5x o
Baseline
10 15x 10.5x
I I 0.3 I
1 —
M

1K 10K 100K
Appended Element #

Variable-length append (string)

1000000

m Baseline: HDFS release 1.1x

100000
m HDF5 dev high level

Baseline
10000 Baseline 1.0x e
m HDFS5 dev lib level -
Baseline
1000 1.1x —
Baseline 0.99x
100 2.2x
10 I
1
1K

10K 100K M
Appended Element #

Variable-length data storage

Goal: Improve access time and file size of [streamed]
variable-length (VL) data in HDF5 files

e Currently:

o Separate “heaps” in HDF5 files for storing VL data elements
o Random-access chunk indices

e Need:

o “Unified” fixed & VL data element storage
o Streaming-enabled chunk indices

Variable-length data storage

L
pa // // Z — I et
—.-#
7 7 Le—" /—-‘“ |
—T 111
// |
o] o—

/
s
\ ///

Variable-length data storage

/1

i
) C(\
i

Variable-length data storage

Index Node Height § | 8

Number of Elements Per Data Block Unit 4 | 16

Y |
Number of Elements in Index Block 4 | 4 Configuration Block
Y
Min. Number of Data Block Pointers in A Super Block 4 | &
! E+-Array
Index Node Pointer
f >t il

= nil

Y — : Super Block #4
——>{ nil

Super Block Pointers

Index Block “ | — — ~

Data Block Pointers ¢

Elements.

#of Elements < | 424 1 ‘ | | | |
‘ | ‘ ‘ . .

[Super Block 2

Super Block #0 | Super Block #1 ‘

{ \ 16/16 32/32 32/32 32/32 64/64 ‘ 64/64 64/64 64/64 52/64

S—
- Element Data Blocks:
- - (Elements used / allowed)

Next

x . t N
Metadata | Fixed-Length Data | Variable-Length Data |2 | Metadata | Fixed-Length Data Nt L L foxt

Fixed-Length Data | Variable-Length Data e

Metadata

Variable-Length Data Metadata | Fixed-Length Data | Variable-Length Data

Leaf Node #0 Leaf Node #1 ‘ Leaf Node #4 Leaf Node #5

Conclusions

Thanks to:

y“l U.S. DEPARTMENT OF Office of

EN ERGY Science

Many efforts toward Experimental & Observational Data needs

e Now:

@)

O O O O O O O

(@)

Splitter virtual file driver (VFD) - Split data to different files

Mirror VED - Replicate HDF5 files in different systems (“streaming rsync”)
Sparse Data management

h5prov - Pass-through virtual object layer (VOL) to capture provenance
Onion VFD - Version control on HDF5 files

MIQS - Metadata and indexing for self-describing formats

XTC2 VOL connector - Terminal VOL connector, to read XTC2 format files
Variable length data storage improvements

Streaming API routines - Efficient support for adding records to datasets

e [uture:

@)

Pursuing continued funding for more work

