
HDF5 Features for Managing Experimental 
and Observational Data and Superfacility

Quincey Koziol, Suren Byna, and John Mainzer

Lawrence Berkeley Laboratory, The HDF Group, and Texas Tech 
University

Team members: Houjun Tang, Tony Li, Gerd Heber, Scot Breitenfeld, Jake Smith, Wei 
Zhang, Chenxu Niu, and Yong Chen



Experimental and Observational Data - Use cases

NCEM is working on cryoEM (electron 
microscopy at cryogenic temperatures), 
will generate high-res images at high 
frequency

HDF5 reqs: Remote / realtime file 
transfer, multiple writers - multiple 
readers (MWMR), and sparse 
representations

LCLS-II upgrade will have high 
repetition rate (1-MHz) and very high 
data throughput (100GB/s)

HDF5 reqs: Remote / realtime file transfer 
w/ low latency SWMR, multiple writers -
multiple readers (MWMR), sparse 
representations, efficient variable length 
data representations, avoid file corruption 
on crash, data reduction via compression 
and removing uninteresting data, ...

Illustration courtesy of Martin Hogborn/The Royal Swedish 
Academy of Sciences

Illustration courtesy of N. Sauter/Berkeley Lab 
(Data taken with the LCLS X-ray laser )

Solved structures of the Fc tail domain of the IgG 
antibody, wild type (WT) and engineered (A801) --
Illustration courtesy of Chang-Han Lee, UT Austin

ALS data production rates are 
anticipated to reach 80 GB/s (1.5 
PB/month) over its lifetime. SPOT suite 
uses HDF5 for managing data.

HDF5 reqs: revising data types / schema 
while keeping the original data unmodified, 
manage metadata of several HDF5 files 
(containers), querying metadata within 
HDF5 containers, ...



Examples of experimental and observational data use case - LCLS

Image credit: LCLS from SLAC



Examples of experimental and observational data use case - ALS

Image credit: Spot Suite slides by Craig Tull, LBNL, http://spot.nersc.gov/



Requirements of EOD use cases

● Requirements of NCEM data
○ Support for sparse data management
○ Support for remote streaming synchronization 
○ Multiple producers and multiple consumers of data

● Requirements of LCLS-II data
○ Handle multiple producers and multiple consumers of data 
○ Support remote streaming synchronization
○ Support for variable length modes of data

● Requirements of ALS data 
○ Extend data models to support changes in data and data schemas
○ Metadata and provenance management for multiple HDF5 containers



EOD-Focused Features in Development

● Splitter virtual file driver (VFD) - Split data to different files
● Mirror VFD - Replicate HDF5 files in different systems (“streaming rsync”)

○ Probably should be called “client-server” VFD

● Sparse Data management
● h5prov - Pass-through virtual object layer (VOL) to capture provenance
● Onion VFD - Version control on HDF5 files
● MIQS - Metadata and indexing for self-describing formats
● XTC2 VOL connector - Terminal VOL connector, to read XTC2 format files
● Variable length data storage improvements
● Streaming API routines - Efficient support for adding records to datasets



Splitter and Mirror VFDs for remote streaming sync

● Remote streaming synchronization
○ Use case: LCLS-2 at SLAC will need to write 

HDF5 files locally and simultaneously 
duplicate the files on Cori at NERSC

○ Developed Splitter and Mirror Virtual File 
Drivers (VFD)

○ Mirror-Writer can send data to a receiver in a 
different system

○ Testing in progress for transferring data 
between SLAC and NERSC

Credit: From John Mainzer’s RFC; More on this in John’s talk later.



Sparse data management
● A large number of science datasets are sparse
● There is no concept of sparseness in the HDF5 data model
● A few workarounds

○ Chunked layout + Compression, Mimic sparse formats 
● Issues with workarounds: hard to determine “written-to” 

entries, doesn’t preserve array abstraction
● Idea: Sparse chunks

○ “Decorated” with a selection that marks the positions of non-fill values
○ Preserves array abstraction and provides space savings

● Initial evaluation of sparse chunks
○ Observed read / write speedups and space compression

John, Mainzer, Neil Fortner, Gerd Heber, Elena Pourmal, Quincey Koziol, Suren Byna, and Marc Paterno, “Sparse Data 
Management in HDF5”, 1st IEEE/ACM Annual Workshop on Large-scale Experiment-in-the-Loop Computing, 
XLOOP@SC19, 2019



Provenance Capture with h5prov VOL connector
● h5prov Virtual Object Layer (VOL) connector
● Collects:

○ User
○ Application
○ Data – file, datasets within files
○ Timestamps
○ File operations: opens and closes
○ Dataset operations: reads and writes

■ File (physical) offset, array (logical) offset
● Use cases

○ How many unique users and applications are using HDF5
○ Data usage: Which files are used and is there a pattern?
○ Identifying patterns of HDF5 dataset usage to trigger prefetching data 

from parallel file systems

Tonglin Li, Quincey Koziol, Houjun Tang, Jialin Liu, and Suren Byna, “H5Prov: I/O Performance Analysis of Science Applications Using HDF5 
File-level Provenance”, CUG 2019 - https://sdm.lbl.gov/~sbyna/research/papers/2019/201905-CUG-H5Prov-Provenance.pdf



Onion VFD for version control
● ALS users require support for tracking modifications to 

metadata attributes

● There are several requests for tracking modifications to an HDF5 file while 
preserving or access to the file as it existed in the past

● Solution: Onion Virtual File Driver (VFD) 
○ The original file exists with data layered atop one another from an original file to 

the most recent revision
● Each revision, once committed, cannot itself be modified – rather, a 

subsequent revision must supply the amended content.
● Revision index to map locations in the logical file to the correct bytes in the 

backing store
● Browsing revision is possible with a new HDF5 function - H5FDfctl 
● Feature is in active development

Credit: From John Mainzer’s RFC; More on this in John’s talk later.



MIQS: Metadata indexing and querying for self-describing files

● Self-describing file formats that store metadata along 
with data, such as HDF5 and netCDF, are extensively 
used to store scientific data

● Use case: ALS users require support for 
○ Querying attribute data to find data objects

● A typical approach is extracting the metadata and 
storing it in a database

● To search directly on the metadata in HDF5 files, 
developed an in memory indexing and querying 
method that’s much faster than databases

○ Because MIQS indexes are in memory compared to MongoDB, 
MIQS is very fast (172,000X faster)

A hybrid index for numeric values and 
string values of attributes

Wei Zhang, Suren Byna, Houjun Tang, Brody Williams, and Yong Chen, "MIQS: Metadata Indexing and Querying Service for Self-Describing 
File Formats", SC19, https://sdm.lbl.gov/~sbyna/research/papers/2019/201911-EOD_HDF5_Metadata_Search-SC19.pdf



LLANA: SLAC-NERSC Superfacility Project

HDF5 Tasks:

● XTC2 VOL Connector
○ Read-only VOL connector to access XTC2 data through HDF5 API

● Performance Enhancements to Streamed Data I/O
○ “Streaming API” that streamlines appending records to datasets

● Variable-Length Data Storage Improvements
○ “Hybrid chunk” storage that combines VL-data with fixed-data in each chunk
○ “Stream-focused” chunk index, 



XTC2 VOL Connector

Goal: Access XTC2 files from HDF5 applications

● Maps HDF5 data model to XTC2 file format
○ A good example of using HDF5 VOL framework to access data in non-HDF5 files

● HDF5 Applications can transparently access data in XTC2 files, without
modifying code or even rebuilding

○ Use environment variable to choose XTC2 VOL connector

● Available in the LCLS2 git repository:
○ https://github.com/slac-lcls/lcls2/tree/dev_tony

https://github.com/slac-lcls/lcls2/tree/dev_tony


XTC2 VOL Connector

Goal: Access XTC2 files from HDF5 applications

● Maps HDF5 data model to XTC2 file format
○ A good example of using HDF5 VOL framework to access data in non-HDF5 files

● HDF5 Applications can transparently access data in XTC2 files, without
modifying code or even rebuilding

○ Use environment variable to choose XTC2 VOL connector

● Available in the LCLS2 git repository:
○ https://github.com/slac-lcls/lcls2/tree/dev_tony

https://github.com/slac-lcls/lcls2/tree/dev_tony


Streaming API

Goal: Improve performance of 
streamed access to dataset records

● Amortize “setup / teardown” cost of append 
operations

● New “cursor” API routines:
○ H5Dcursor_create
○ H5Dcursor_write_next / H5Dcursor_read_next
○ H5Dcursor_close



Variable-length data storage

Goal: Improve access time and file size of [streamed] 
variable-length (VL) data in HDF5 files

● Currently:
○ Separate “heaps” in HDF5 files for storing VL data elements
○ Random-access chunk indices

● Need:
○ “Unified” fixed & VL data element storage
○ Streaming-enabled chunk indices



Variable-length data storage



Variable-length data storage



Variable-length data storage



Conclusions

Many efforts toward Experimental & Observational Data needs

● Now:
○ Splitter virtual file driver (VFD) - Split data to different files
○ Mirror VFD - Replicate HDF5 files in different systems (“streaming rsync”)
○ Sparse Data management
○ h5prov - Pass-through virtual object layer (VOL) to capture provenance
○ Onion VFD - Version control on HDF5 files
○ MIQS - Metadata and indexing for self-describing formats
○ XTC2 VOL connector - Terminal VOL connector, to read XTC2 format files
○ Variable length data storage improvements
○ Streaming API routines - Efficient support for adding records to datasets

● Future:
○ Pursuing continued funding for more work

Thanks to:


