AN INTRODUCTION T0 HDF3
IN HPC ENVIRONMENTS

- |DEAS T0 BYTES AND BACK -

GERD HEBER, THE HDF GROUP
2020-06-05

TABLE OF CONTENTS

e Why

e APromise

e Daily Grind - A Second Glance

e "Zero Knowledge" HDF5 Productivity
e How to Speak HDF5

e Parallel HDF5

e Onwards and Upwards

WHY

HDF5 is our contribution to making the management of certain
large complex data sets as simple as possible, but not simpler.

At the enc

of t

A PROMISE

nis presentation you will know:

e The shortest pat

N to

e The HDF5 building b
e How to spot & diagnose performance issues in the use of HDF5
e Where to find help
e There's a lot more to discover

peing productive w/ HDF5

ocks which seem familiar but set it apart

DAILY GRIND - A SECOND GLANCE

 Problems you might have come across
e How an HDF5-based approach is different

"JUST DO IT!*

| put my ideas into memory. Now, just...

favorite_color = { "lion": "yellow", "kitty": "red" }

import pickle
pickle.dump(favorite_color, open("save.p", "wb"))

favorite_color = pickle.load(open("save.p", "rb"

Source: wiki.python.org/moin/UsingPickle
Phew, one less thing to think about!

Not quite: Names? Performance? Portability?...-lity?

https://wiki.python.org/moin/UsingPickle

ML TRAINING SET

A tarball containing O(10°) of small (<64KB) images.
WANTED: Random access to the images.
Why not just "use the file system?"

tar -xvf images.tar # => Meet your friendly admin staff!

|deas

e Use libarchive and have a virtual tape drive
e Can we have some kind of "file system in a file" (?)
e Or alongbyte stream plus a "marker array"

https://www.libarchive.org/

STORING A GRAPH

Which one is "right?" (It depends...)

Graph database?

S =IO O =N

1 0 0 1
0 1 0 1
1 0 1 O
0 1 0 1
1 0 1 O
0 0 1 O

Source: Wikipedia

O O = O O O

https://en.wikipedia.org/wiki/Adjacency_matrix

HDFS

HDF5 let's you map application- to storage-abstractions
= Pragmatic: many mappings are possible
Provides data portability (HPC, Cloud, Edge, ...)
= No matter what the hardware or OS
Longevity++
= Open specifications and Free Open Source Software
HDF5 is a "trade-off toolkit"
= Find your sweet-spot
= | et's you adapt when circumstances change
It cannot solve all of your problems.

| can't wait to get started! How?

"LERO KNOWLEDGE" HDF3 PRODUCTIVITY

Oxymoron?

coONO O hWNBE

PYTHON, JULIA, R, MATLAB, ...

temperature = np.random.random(1024)

: wind = np.random.random(2048)

: f = hbpy.File('weather.hdf5"')

: F["/15/temperature”"] = temperature

: F["/15/temperature"].attrs["dt"] = 10.0
: f["/15/wind"] = wind

: dataset[0:10:2]

big_dataset = f.create_dataset('"big",
shape=(1024, 1024, 1024, 512),
dtype='float32')
big_dataset[344, 678, 23, 36] = 42.0

: compressed_dataset = f.create_dataset("comp", shape=(1024,),

dtype='1int32',
compression="'gzip"')

HDEF5 just blends in - no need to learn an API!

Exascale?

A NEW LANGUAGE

C++ feels like a new language. That is, | can express my ideas more clearly,
more simply, and more directly today than | could in C++98. Furthermore,

the resulting programs are better checked by the compiler and run faster.
(B Stroustrup, A Tour of C++,2018)

A NEW SPIRIT

H5CPP%|

e A new body
s Steven Varga (aka "Canada Dry")

Independent developer and researcher
H5CPP: Main Page, GitHub

e Values

Idiomaticity - modern C++17

Parsimony - four basic CRUD-like templates
Openness - batt. included, e.g., LinAlg. systems
Performance - zero overhead over the C-API
Productivity - zero HDF5-boilerplate

http://h5cpp.org/
https://github.com/steven-varga

REMEMBER p1ck le?

favorite_object = ...

pickle.dump(favorite_object, open("save.p", "wb"))

favorite_object = pickle.load(open("save.p", "rb"))

Let's do it!

std::vector<double> v(10);
h5::write("save.h5", "stl/vector/v", v);

using T = std::vector<double>;
auto v = hb5::read<T>("save.h5","stl/vector/v");

Easy.

ONO O b~ WNE

: float value {42.0},

PYTHON CONVENIENCE AT THE SPEED OF C(++17)

: fvec temperature = arma::randu<fvec>(1024);

: fvec wind = arma::randu<fvec>(2048);

: auto fd = h5::create("weather.hdf5");

: auto ds h5::write(fd, "/15/temperature", temperature);
: ds["dt"] = 10.0f;

h5::write(fd, "/15/wind", wind);

h5::read<fvec>(ds, h5::offset{0}, h5::count{5}, hb5::stride{2});

: auto big = h5::create<float>(fd, "big",

h5::current_dims{1024, 1024, 1024, 512},
h5::chunk{16, 16, 16, 8});

h5::write<float>(ds, &value,
h5::offset{344, 678, 23, 36},
h5::count{1, 1, 1, 1});

: auto comp = h5::create<int>(fd, "comp",

h5::current_dims{1024},
h5::chunk{64} | h5::g9zip{4});

You are not expected to absorb this in 10 seconds.

Just note the similarity w/ Python & Co.

ANOTHER ACE UP OUR SLEEVE: COMPILER ASSISTANCE

consOREd

Source: ALA

This is a presentation for beginners...

https://www.oif.ala.org/oif/?p=13550

TAKE-AWAY

e |ittle or no knowledge of HDF5 isn't a showstopper.
e The community went the last mile to HDF5 productivity.
e |fyour code looks like C, it's either C or you need help.

But what is HDF5?

HOW TO SPEAK HDF3

WHAT WE HAVE SEEN SO FAR

As keen observers, you will

nave noticed:

e HDF5 things are storec

in files(?)

e We can refer to them by path names

®» Directories?

e We canuse it to store arrays

= Random access
= Slice and stride
e We can tag arrays
s Key-value pairs(?)

"Mr. Holmes, these are the footprints of a
® gjgantic file system!" (Dr. Mortimer)

Source: Wikipedia

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant

HDF5 LOOKS A BIT LIKE THIS

datasets

” =
metadata

~E .=
metaaata
= ==

metadata metadata

metadata

=
E E metadata

metadata metadata

Source: The National Ecological Observatory Network

https://www.neonscience.org/about-hdf5

HDF5 DATA MODEL

An HDF5 "file" is a rooted, decorated web of array variables.

e One core concept: (discretized) function
= The rest deals with the presentation of such functions.
= CS: grid function "=" array
e An array-valued variable is called array variable.
= Element type, rank, and extent
e HDF5 array variables are used in two roles:
1. Datasets - when linked in associations called groups
2. Attributes - as named decorators of groups or datasets

e Fach HDF5 "file" has a designated root group.

HDF5 IN ACTION

e Basics
= Access HDF5 objects through path names
(/My/cool/0bject)

= HDF5 attributes give context (SAMPLING_RATE)

e Flexible type system
= An extensive built-in collection of (nhon-)numerical types
s Use type-generators (e.g., records, arrays) to extend
o Use sparingly
e Slicing and dicing of array variables
= "Generalized block access" via hyperslabs and point sets
= Partial I/0O - limit ops. to certain subsets or record fields

TAKE-AWAY

e |ike any useful data model, HDF5 is small.
= (Implementation is another matter)
 You need to learn how to express your ideas in this "language.”

How does all that relate to HPC?

PARALLEL hDFS

THE BASIC STRUCTURE OF AN MPI PROGRAM

int main(int argc, char** argv) {

int size, rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

1:
2.
3:
4:
S5:
6:
7
8:

MPI_Barrier (MPI_COMM_WORLD) ;
MPI_Finalize();
return 0;

We won't repeat the MPI boilerplate.

PARALLEL 1/0 RECAP

e Parallel access paths e File patterns
e Parallel file systems = N-1, N-N, N-M (N>M)
= Data striping e "Mechanics"
= Replication = |/O forwarding
= Fastinterconnect = Tiered storage (e.g.,
e Process coordination burst buffers)
= |ndependent (no) e Software "layer cake"
= Collective (yes) = Murphy's law applies

LET'S TRY THIS

Let's create a 2D HDF5 dataset and write to it, in parallel!

Process P1
File
offset[1]

Memory

count[1l]

NN

AN

77

offset[0]

count|[0] |

dimsf[0]/mpi_size

dimsf[1l];

mpi rank * count[0]; /* = 2 */
0; ~

count[0]
count[1l]
offset[0]
offset[1]

(View from MPI process 1.)

A SEQUENTIAL PROGRAM WOULD LOOK LIKE THIS

: std::vector<double> v(100);
: std::fill(std::begin(v), std::end(v), 1);

: auto fd = hb5::create("sequential.h5", H5F_ACC_TRUNC);

1:
2.
3:
4:
5:
6:
-

8:

: h5::write(fd, "dataset", v, hb5::current_dims{2*size, 50},
h5::o0ffset{2, 0}, h5::count{2, 50});

A parallel version would run this program (adjusted for rank) on all
processes of an MPl communicator.

SYNTAX IS THE EASY PART

: std::vector<double> v(100);
: std::fill(std::begin(v), std::end(v), rank);

: auto fd = hb::create("parallel.h5", H5F_ACC_TRUNC,
h5::mpiio({MPI_COMM_WORLD, MPI_INFO_NULL}));

1:
2.
3.
4:
5

6:
7:
8

: h5::write(fd, "dataset", v, hb5::current_dims{2*size, 50},
h5::o0ffset{2*rank, 0}, h5::count{2, 50});

e Each process writesa (2, 50) block at offset (2*rank, 0).

e All "magic" happensin line 2 (plus the adjustment in line 13).
e [t's OKtowritea 1D array to a 2D array.
e Ditto for reading the data back.

WAIT A MINUTE...

1. Any difference between sequential and parallel HDF5 files?
e Nope. There's only one HDF5 file format.
2.Aretheh5::[read, write] calls collective or independent?

e The default behavior is independent I/O.

e Collective I/O can be configured as follows:

(fd, , V, hb5::current_dims{ , 50},
h5::o0ffset{2*rank, 0}, h5::count{2, 50},

h5::collective);

(See line 3.) Easy.
3. Why do my friends keep saying that parallel I/O is hard?

IT'S A BALANCING ACT

High-Level 1/0 Library Application

maps application abstractions 10 Middleware

onto storage abstractions 4‘ High-Level I/O Library organizes accesses from

and provides data portability. many processes,

HDF5, Parallel netCDF, ADIOS . especially those using
/O Middleware collective I/O.

1/0 Aggregation i MPI-IO

bridges between app. tasks —l /O Aggregation

and storage system and Parallel File System

combines operations to reduce Parallel File System }7 maintains logical space

"randomness” of 1/O. and provides efficient

IBM ciod /O Hard access to data.

ardware PVFS, PanFS, GPFS, Lustre
Figure 1. The I/0O software stack presents numerous opportunities for optimization.

Source: Latham et al. A case study for scientific I/O: improving the
FLASH astrophysics code - https://doi.org/10.1088/1749-
4699/5/1/015001

https://doi.org/10.1088/1749-4699/5/1/015001

METHOD

You can't improve what you can't measure.

1. Establish target system's characteristics

2. Baseline your application

3. Data collection

4. Hypothesis formulation

5. Configuration change - One at a time!

6. Hypothesis confirmation/rejection/put aside
7.Stop ? DONE : GOTO 3. (<= Can be difficult!)

APPLYING THE METHOD

e Establish your target system's characteristics

= Published acceptance test results

= Flexible I/O tester (FIO)

= Other fine choices, e.g., IOR (see General I/O References)
e Baseline your application

= Back-of-the-envelope calculations

= Pick atypical set of inputs (to your application)

= Use atool such as Darshan or TAU

https://fio.readthedocs.io/en/latest/
https://www.mcs.anl.gov/research/projects/darshan/
https://www.cs.uoregon.edu/research/tau/home.php

VISUALIZE

| jobid: 3655016

| uid: 69628 | nprocs: 48

runtime: 7 seconds

@
[=]
T

=]
o
T

Percentage of run time
F-9
[=]

Average /O cost per process

:

STENEEE

Read W \Write Doosssn

/O Operation Counts

20
0
Read Write Open Stat Seek Mmap Fsync
POSIX m— MPI-IO Coll. m—
Other (including application compute) = MPI-IO Indep. essssen
POSIX Access Sizes MPI-IO Access Sizes '-i:
7000 ¢ 800 r
6000 700 +
85000 geoor
& & 500
< 4000 <
3 g
EBOOU C'SOO
= €
52000 <§200
1000 + 100 F
°"'_IJO,;};;'}}; = H % o m 7 7
L, o, 4 o o %
B %, o o, e, o O, o, 0,
T YT " % A A e

Read mmmmm Write s

Source: Darshan-util installation and usage

https://www.mcs.anl.gov/research/projects/darshan/docs/darshan-util.html#_analyzing_log_files

TELLTALE SIGNS
Learning how to read a Darshan profile is time well spent.
A list of "usual suspects:"

e Alarge proportion of small (< 4KB) reads and writes
e Alarge gap between the fastest and slowest ranks
= Alarge variance in |/O size and time between ranks
e Alarge number of seek operations or unaligned operations

e Non-collective |/O where collective was expected

TAKE-AWAY

e The HDF5 library makes parallel applications and data portable
= Tools such as H5CPP make it convenient

e Performance portability is an aspiration
= Remember the "layer cake!"

e Arm yourself with method and the right tools!
= Stay tuned for an upcoming tutorial on that topic!

Where do | go from here?

ONWARDS AND UPWARDS

You can go on to make your own mistakes.

We've already done it for you!

To make original mistakes is harder than it seems.

CHECK OUT THESE HDF2 RESOURCES

e Don't miss the "loss-leader" HDF View - download this first!

e The slides and examples from this presentation are on GitHub

e Learn more about The HDF Group and it's mission

e | ooking for the HDF Support Portal?

e Binge-watch HDF5 training videos

e Getideas fromthe HDF5 Blog, e.g., HDF5 under the SOFA
e Check out HDF5 presentations on SlideShare

e Connect with the community on the HDF forum

e Subscribe to the HDF Newsletter

e There's avast HDF5 ecosystem

https://www.hdfgroup.org/downloads/hdfview/
https://github.com/HDFGroup/hdf5-beginner/blob/master/hdf5-beginner.org
https://www.hdfgroup.org/
https://portal.hdfgroup.org/display/support
https://portal.hdfgroup.org/display/HDF5/Training+Videos
https://www.hdfgroup.org/blog/
https://www.hdfgroup.org/2017/04/hdf5-under-the-sofa-hdf5-on-embedded-and-mobile-devices/
https://www.slideshare.net/HDFEOS/presentations
https://forum.hdfgroup.org/
https://www.hdfgroup.org/category/hdf-news/
https://portal.hdfgroup.org/display/support/Software+Using+HDF5

KICK THE TIRES

Zero installation: HDF Kita Lab
= JupyterLab environment

= All HDF5 dependencies pre-installed + plenty of examples

Easy installation:

= Python:install h5py via package manager (pip, conda, ...

= Julia: Pkg.add("HDF5")

= R:install rhdf5 via the Bioconductor manager

install.packages('"BiocManager")
BiocManager::install("rhdf5")

HDFql: Download installers from www.hdfqgl.com
H5CPP: Debian and RPM packages from h5cpp.org

—

https://www.hdfgroup.org/hdfkitalab/
https://www.bioconductor.org/
http://www.hdfql.com/#download
http://h5cpp.org/download/

GENERAL 1/0 REFERENCES

e Flexible I/O tester (FIO)
= Documentation
= Source
e |OR-HPC IO Benchmark Repository
e A Multi-purpose, Application-Centric, Scalable 1/O Proxy
Application (MACSio)
= Documentation

= Source
e Virtual Institute for I/0O - 10500

https://fio.readthedocs.io/en/latest/
https://git.kernel.org/pub/scm/linux/kernel/git/axboe/fio.git
https://github.com/hpc/ior
https://macsio.readthedocs.io/en/latest/
https://github.com/LLNL/MACSio
https://www.vi4io.org/io500/start

PREVIEW OF INTERMEDIATE AND ADVANCED TOPICS

This is the first in a series of webinars. Stay tuned for:

HDEF5 for the Cloud

HDF5 long-term data access
In-depth HDF5 datatypes
Compression

Concurrency

Referencing and Linkage
Data and Metadata
Granularity

HDF5 library architecture
HDF5 extensions

THANK YOU

Acknowledgment: This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-ACO5-
OOOR22725.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

QUESTIONS

