
Ed
Hartnett
 11/17/19

PIO and NetCDF

I/O on Small Processor Counts is Easy
● One processor can use sequential access to netCDF/HDF5 files. Easy!
● Tens of processors can use parallel access to netCDF/HDF5 files. Not as

easy, but simple enough.

I/O on One or Few
Processors

Ed Hartnett 6/1/19

Sequential I/O:
One processor
writes to disk.
The good old
days!

Parallel I/O: Multiple
processors each read/write
to parallel disk system.
Higher bandwidth is
available than with
sequential I/O. Does not
scale well past 10s or 100s
of processors.

One Processor
Few Processors

I/O on Large Processor Counts is Harder
● Now we need to run on tens of thousands of processors.
● Parallel I/O does not scale - once the (relatively few) I/O channels to disk

hardware are filled, processors wait.
● A solution is to designate a subset of processors to handle all I/O, and buffer

I/O operations.
● This may be done with the PIO library.

PIO Fortran Library

PIO C Library

User C Code

netCDF C Library pnetcdf C Library

HDF5 C Library

zlib Library

netCDF CDFxnetCDF-4/HDF5

PIO Library Architecture

User Code

Pio Code

3rd Party
Libraries

data

Ed Hartnett, 5/1/19

User Fortran Code

I/O on Many Processors
(PIO Intracomm Mode)

With thousands of
processors, some small
subset must be
designated for I/O. If all
processors attempt to
access disks directly,
they will all end up
waiting.

MPI

Processors access I/O
processors for I/O. I/O
processors buffer data
and read/write to disks.computational processors I/O processors

In PIO Intracomm mode, the
I/O processors are a subset of
the computation processors,
and they also do computational
processing.

Multi-Level Parallelism
● A further refinement is to have multiple computational components, all using

the same dedicated I/O component to do I/O.

I/O on Many Processors
(PIO Async Mode)

Ed Hartnett 6/1/19

I/O processors are
dedicated to I/O and don’t
do computational work.

I/O processors

computational unit 1

computational unit 2

computational unit 3

Each computational unit
runs independent code.
All I/O goes to the I/O
processors.

Computational components
make netCDF-like calls to
perform I/O. The PIO library
transfers the data to the I/O
nodes, which perform the disk
I/O asynchronously.

Computational Components use NetCDF API
● IO System must be initialized with a function call

nc_init_intracomm()/nc_init_async().
● Files are opened/created with NC_PIO flag.
● The computational components make netCDF calls.
● The PIO library handles the transferring of data to/from the I/O processors,

which do the actual disk I/O.

Computational Components Use NetCDF Code

 if ((ret = nc_create(filename, NC_CLOBBER|NC_PIO, &ncid)))
 return ret;
 if ((ret = nc_def_dim(ncid, DIM_NAME_S1, DIM_LEN_S1, &dimid)))
 return ret;
 if ((ret = nc_def_var(ncid, VAR_NAME_S1, NC_INT, NDIM_S1, &dimid, &varid)))
 return ret;
 if ((ret = nc_enddef(ncid)))
 return ret;

Global vs. Local Arrays
● The shape of a netCDF record defines the global data space.
● Once divided on to many processors, each processor has a subset of the

global data space - the local array.
● Together, all local arrays add up to the global array.
● There may be halos - data that are needed for computation but are outside

the area that the processor should be writing.

PIO Distributed Arrays
● Each processor within a computational unit has its region of responsibility

within the global variable data space.
● PIO allows users to specify this decomposition.
● Different read and write decompositions may be used to support halos.

PIO Decomposition
Decomposing an 8x8 Array over 16 Processors

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 1 2 3

8 9 10 11

16 17 18 19

24 25 26 27

32 33 34 35

40 41 42 43

48 49 50 51

56 57 58 59

0 1

3

4 5

6 7

8 9

10 11

12 13

14 15

2

4 5 6 7

12 13 14 15

20 21 22 23

28 29 30 31

36 37 38 39

44 45 46 47

52 53 54 55

60 61 62 63

global

local

cpu

The global 8x8 array needs to be
distributed to 16 processors.

Each processor
handles 4 elements
of the array.

Decompositions Stored in Files
● Once a decomposition has

been created, it can be
written to file, and read in
again to initialize a
decomposition object.

● Decomposition files can be
text (legacy) or netCDF
(new).

netcdf darray_no_async_decomp {
dimensions:

dims = 2 ;
task = 16 ;
map_element = 4 ;

variables:
int global_size(dims) ;
int maplen(task) ;
int map(task, map_element) ;

// global attributes:
:PIO_library_version = "2.4.2" ;
:max_maplen = 4 ;
:title = "Example Decomposition from

darray_no_async.c" ;
:history = "This file is created by the

program darray_no_async in the PIO C library" ;
:source = "Decomposition file produced by

PIO library." ;
:array_order = "C" ;
:backtrace = “...”

Where Is PIO Used?
● PIO has been in use in CESM (Community Earth System Model) since

around 2008.
○ Standard spatial resolution is 1 deg atmosphere and 1 degree ocn. As a climate model we

don't normally write per timestep, very high temporal resolution would be hourly. High is daily
and typical is monthly.

○ High spatial resolution is 1/4 degree atmosphere and 1/10 degree ocn.

● The cmip6 experiments which are currently underway have produced some 2
PB of data so far - all written using the pio library.

