
Data-parallel analysis supported by HDF5

Marc Paterno
HDF BOF @SC19



Fermilab

"Fermilab is America’s particle physics and accelerator laboratory.

We bring the world together to solve the mysteries of matter, energy, space and time."

2/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



How we are currently using HDF5

Most of HEP does not have a long history with HDF5.
The accelerator modeling community has been using more than 10 years (since v 1.6).

We use it to store tabular data (HEP calls them ntuples)
for interactive analysis by scientists
for input to machine learning algorithms

We are exploring its use for moderately large data sets
current analysis target is about 2 TB.

HEP scientists program in (1) C++ and (2) Python
One of our projects is concentrating on analysis using pandas, employing HDF5 to
support easy-to-use parallel reading of datasets.

3/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



What are data storage looks like

Tabular data
Use group to represent a table; read it into a DataFrame.
Use dataset to represent a column.

Read table into a pandas DataFrame.
Why not use support of HDF5 from pandas?

Our data sometimes contains multi-dimenional arrays, which don’t seem well-supported
by pandas.
Storing data using simple HDF5 concepts allow us to read the data with other tools as
well.

A complication: files have hundreds of tables, which do not all align. We need the
equivalent of joins between tables — but joins are expensive.

4/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



Avoiding joins

slices

slc 1

slc 2

slc 3

slc 4

Use vertex summary with slice information,
for second level of selection.

vertices

slc 1

slc 1

slc 1

slc 1

slc 2

slc 4

slc 4

Group verices by slice,
to make first selection

slc 4

slc 4

5/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



What analysis code looks like

Analysis programs are MPI-based
Physicists see almost no MPI code — they write as if for a serial process

Sometimes need a trivial reduction, adding results from the many ranks

Framework core code handles data parallelism

def kNueCVNCut(tables): # input is a dict of DataFrames
df = kCVNe(tables) # apply a different named selection first
dfRHC = df[kRHC(tables)==1] >= kNueCVNRHC # RHC-class data...
dfFHC = df[kRHC(tables)!=1] >= kNueCVNFHC # FHC-class data...
return pd.concat([dfRHC, dfFHC]) # Our result is the sum

6/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



Some performance measurements (32 core AMD K10 (Barcelona) server)

0

10000

20000

0 10 20 30
Number of ranks

T
hr

ou
gh

pu
t (

ev
en

ts
/s

)

7/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5



What could make this easier

We have to keep index columns (datasets) in each table (group) to let us align the data.
We keep another index column to let us calculate spans of slices to be processed by
each MPI rank.
A clever indexing scheme would make this task easier. . .
Efficient sparse array storage would make this trivial.

8/8 HDF BOF @SC19 Paterno | Data-parallel analysis supported by HDF5


