
HDF5 for Rust
Ivan Smirnov

HDF5 European Workshop for Science and Industry, ESRF (2019) 1/36

Rust?..

HDF5 European Workshop for Science and Industry, ESRF (2019) 2/36

fn main() {
 println!("Hello, world!");
}

"Rust is a multi-paradigm system programming language
focused on safety, especially safe concurrency."

"Rust is syntactically similar to C++, but is designed to
provide better memory safety while maintaining high
performance."

HDF5 European Workshop for Science and Industry, ESRF (2019) 3/36

Why Rust: memory management and memory safety

— No UB1: dangling/null pointers, data races, etc

— No GC: determinism without reference counting

— Ownership model and borrow checker

— Reference safety verified at compile time

— Lifetime management with syntax support

1 In safe Rust.

HDF5 European Workshop for Science and Industry, ESRF (2019) 4/36

Why Rust: ownership, references and borrowing

— Each value has a variable that's called owner

— There can only be one owner at a time

— The owner goes out of scope => the value is dropped

— Values may be borrowed via const/mut references

— References may not outlive the owner

— At any given time, you can have either:

— one mutable reference

— any number of const references

— Move semantics by default (unless type implements Copy)

HDF5 European Workshop for Science and Industry, ESRF (2019) 5/36

Why Rust: modules, macros, tooling

— Proper module system with privacy layers
(no more #include)

— Hygienic AST macros + procedural macros
(no more #define)

— cargo: build system, package manager, tests, docs

HDF5 European Workshop for Science and Industry, ESRF (2019) 6/36

Why Rust: type system

Algebraic data types with pattern matching:

pub enum Filter {
 Deflate(u8),
 Shuffle,
}

pub fn apply_filter(filter: Filter, id: hid_t) {
 match filter {
 Filter::Deflate(level) => apply_deflate(id, level),
 Filter::Shuffle => apply_shuffle(id),
 }
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 7/36

Why Rust: error handling

— No exceptions, no try/catch/finally

— No "error code is non-zero, check it yourself"

— Two types of errors:

— Non-recoverable: panic - unwind the stack, quit

— Recoverable: Result<T, E>

HDF5 European Workshop for Science and Industry, ESRF (2019) 8/36

Result type:

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Example:

let f = File::open("hello.txt"); // Result<File, io::Error>

let f = match f {
 Ok(file) => file,
 Err(error) => {
 panic!("Problem opening the file: {:?}", error)
 },
};

HDF5 European Workshop for Science and Industry, ESRF (2019) 9/36

Error propagation:

use std::{io, io::Read, fs::File};

fn read_file(filename: &str) -> Result<String, io::Error> {
 let f = File::open(filename);
 let mut f = match f {
 Ok(file) => file,
 Err(e) => return Err(e),
 };
 let mut s = String::new();
 match f.read_to_string(&mut s) {
 Ok(_) => Ok(s),
 Err(e) => Err(e),
 }
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 10/36

Simpler error propagation with ?:

use std::{io, io::Read, fs::File};

fn read_file(filename: &str) -> Result<String, io::Error> {
 let mut s = String::new();
 File::open(filename)?.read_to_string(&mut s)?;
 Ok(s)
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 11/36

Why Rust: traits

Traits are "pure interfaces". To implement a trait, either:

— You own the trait (it's in your crate)

— You own the type (it's in your crate)

trait Square {
 fn square(self) -> Self;
}

impl Square for u32 {
 fn square(self) -> Self {
 self * self
 }
}

println!("3^2 = {}", 3.square());

HDF5 European Workshop for Science and Industry, ESRF (2019) 12/36

Blanket trait implementation:

use std::ops::Mul;

// Implement Square for all types that know how to
// multiply themselves by values of the same type
impl<T> Square for T
 where T: Mul<Self, Output=Self> + Copy
{
 fn square(self) -> Self {
 self * self
 }
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 13/36

Let's add a .squared() method to all iterators over types that implement
Square, so that square operation is applied to the stream:

// `iter` is a wrapped iterator
struct SquaredIter<T> { iter: T }

// Squared "derives" from Iterator and has known size
trait Squared: Sized + Iterator {
 fn squared(self) -> SquaredIter<Self>;
}

// Implement Squared for all sized Iterators
impl<T> Squared for T
 where T: Iterator + Sized
{
 fn squared(self) -> SquaredIter<Self> {
 SquaredIter { iter: self }
 }
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 14/36

Finally:

// Let's make SquaredIter an Iterator as well
impl<T> Iterator for SquaredIter<T>
 where T: Iterator, T::Item: Square,
{
 type Item = T::Item;

 fn next(&mut self) -> Option<Self::Item> {
 match self.iter.next() {
 None => None,
 Some(item) => Some(item.square()),
 }
 }
}

...

// prints 1 4 9 16
for x in (1..).take(4).squared() {
 println!("{}", x);
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 15/36

Some of the built-in traits:

— Arithmetical/ops: Mul, Add, BitwiseXor, Not, etc

— Comparison: Eq, PartialEq, Ord, PartialOrd

— Printing/formatting: Display, Debug

— Copying/cloning: Clone, Copy

— Other: Iterator, Deref

HDF5 European Workshop for Science and Industry, ESRF (2019) 16/36

Traits can be auto-derived:

#[derive(Clone, Copy, Debug, PartialEq)]
struct Foo {
 x: i32,
 y: bool,
}

// prints "Foo { x: 2, y: true }"
println!("{:?}", Foo { x: 2, y: true });

It's also possible to implement derive mechanism for
user traits (via "procedural macros").

HDF5 European Workshop for Science and Industry, ESRF (2019) 17/36

Why Rust: error messages

fn foo(x: &mut i32) -> i32 {
 *x * *x
}

fn main() {
 foo(4);
}

error[E0308]: mismatched types
 --> src/main.rs:6:12
 |
6 | foo(4);
 | ^
 | |
 | expected &mut i32, found integer
 | help: consider mutably borrowing here: `&mut 4`

HDF5 European Workshop for Science and Industry, ESRF (2019) 18/36

hdf5-rust

HDF5 European Workshop for Science and Industry, ESRF (2019) 19/36

hdf5-rust

— GitHub repo: https://github.com/aldanor/hdf5-rust

— WIP, in development for the last few years

— Goals:

— Build system for multiple platforms / versions (✔)

— Rust bindings to cover all of HDF5 C API (✔)

— Rust bitwise equivalents for HDF5-specific types (✔)

— Automatic datatype generation for structs/enums (✔)

— The high-level memory-safe/thread-safe interface (⌛)

HDF5 European Workshop for Science and Industry, ESRF (2019) 20/36

Build system

— Builds on Linux / macOS / Windows: cargo build

— Tries it best to locate the HDF5 library (pkgconfig,
brew, registry, venv/conda, system locations, etc)

— Library location can be provided manually

— Parses H5pubconf.h to extract library settings

— Library settings/version - available at compile-time

HDF5 European Workshop for Science and Industry, ESRF (2019) 21/36

Crate layout

— hdf5-sys - C API bindings

— hdf5-types - type descriptors and special types

— hdf5-derive - type descriptor auto-deriving

— hdf5 - the main high-level crate

HDF5 European Workshop for Science and Industry, ESRF (2019) 22/36

C API: enums and structs

Enums and structs in hdf5-sys are memory-equivalent to their C counterparts:

#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct H5F_sect_info_t {
 pub addr: haddr_t,
 pub size: hsize_t,
}

#[repr(C)]
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub enum H5FD_mpio_chunk_opt_t {
 H5FD_MPIO_CHUNK_DEFAULT = 0,
 H5FD_MPIO_CHUNK_ONE_IO = 1,
 H5FD_MPIO_CHUNK_MULTI_IO = 2,
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 23/36

C API: multiple versions

Single source for multiple versions (1.8.4 - 1.10.5):

// hdf5_sys::h5d

pub fn H5Dopen2(
 file_id: hid_t, name: *const c_char, dapl_id: hid_t,
) -> hid_t;

#[cfg(hdf5_1_10_5)]
pub fn H5Dget_num_chunks(
 dset_id: hid_t, fspace_id: hid_t, nchunks: *mut hsize_t,
) -> herr_t;

HDF5 European Workshop for Science and Industry, ESRF (2019) 24/36

C API: opt-in features

// hdf5_sys::h5p

#[cfg(feature = "mpio")]
pub fn H5Pset_fapl_mpio(
 fapl_id: hid_t, comm: mpi_sys::MPI_Comm, info: mpi_sys::MPI_Info,
) -> herr_t;

Example of other features: "lzf", "blosc" (WIP).

HDF5 European Workshop for Science and Industry, ESRF (2019) 25/36

C API: globals, library initialization

Some HIDs are not static and only become available after H5open() has been called.

// H5Ppublic.h

#define H5OPEN H5open(),
#define H5P_ROOT (H5OPEN H5P_CLS_ROOT_ID_g)

/* (Internal to library, do not use! Use macros above) */
H5_DLLVAR hid_t H5P_CLS_ROOT_ID_g;

— In Rust, dereferencing *hdf5_sys::h5p::H5P_ROOT will trigger H5open()
(behind a mutex) and then store and cache the returned HID.

— Linking pain points: __imp_H5P_CLS_ROOT_g on MSVC vs
H5P_CLS_ROOT_ID_g everywhere else.

HDF5 European Workshop for Science and Industry, ESRF (2019) 26/36

Higher-level API

— Thread-safe

— Memory-safe

— Error handling

— Reasonably easy to use

— Object hierarchy

— Immutability by default

HDF5 European Workshop for Science and Industry, ESRF (2019) 27/36

Thread safety

— Similar to h5py: provide thread-safety without --
enable-threadsafe

— Critical operations locked behind a reentrant mutex
(e.g., anything that can modify the error stack)

— Mutexes used: parking_lot

— Thread-safe global registry of object IDs

HDF5 European Workshop for Science and Industry, ESRF (2019) 28/36

Error handling

Most HDF5 calls return hdf5::Result which captures stack on errors:

/// The error type for HDF5-related functions.
#[derive(Clone)]
pub enum Error {
 /// An error occurred in the C API of the HDF5 library. Full error stack is captured.
 HDF5(ErrorStack),
 /// A user error occurred in the high-level Rust API (e.g., invalid user input).
 Internal(String),
}

pub type Result<T> = ::std::result::Result<T, Error>;

E.g.:

impl File {
 pub fn open<P: AsRef<Path>>(filename: P) -> Result<Self> { ... }
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 29/36

Object hierarchy via Deref

pub trait Deref {
 type Target: ?Sized;
 fn deref(&self) -> &Self::Target;
}

If T implements Deref<Target = U>, (1) values of type &T are coerced to &U, (2) T
implicitly implements immutable methods from U.

impl Deref for File {
 type Target = Group;
 fn deref(&self) -> &Group { ... }
}

(1) &File is accepted where &Group is required, (2) all group methods are available in
File, e.g. file.link_exists("foo").

HDF5 European Workshop for Science and Industry, ESRF (2019) 30/36

Type descriptor interface (H5Type)

#[derive(Clone, Debug, PartialEq, Eq)]
pub enum TypeDescriptor {
 Integer(IntSize),
 Unsigned(IntSize),
 Float(FloatSize),
 Boolean,
 Enum(EnumType),
 Compound(CompoundType),
 FixedArray(Box<TypeDescriptor>, usize),
 FixedAscii(usize),
 FixedUnicode(usize),
 VarLenArray(Box<TypeDescriptor>),
 VarLenAscii,
 VarLenUnicode,
}

pub unsafe trait H5Type: 'static {
 fn type_descriptor() -> TypeDescriptor;
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 31/36

Special data types (hdf5-types)

— Memory-equivalent Rust types compatible with HDF5 C API:

— FixedAscii

— FixedUnicode

— VarLenAscii

— VarLenUnicode

— VarLenArray

— ([T; N] is native Rust type)

— String types deref into &str

— Array types deref into &[T]

HDF5 European Workshop for Science and Industry, ESRF (2019) 32/36

Deriving H5Type for user structs/enums

#[derive(hdf5::H5Type, Clone, PartialEq, Debug)]
#[repr(u8)]
pub enum Color {
 RED = 1,
 GREEN = 2,
 BLUE = 3,
}

#[derive(hdf5::H5Type, Clone, PartialEq, Debug)]
#[repr(C)]
pub struct Pixel {
 xy: (i64, i64),
 color: Color,
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 33/36

Example - writing to file

use ndarray::{arr1, arr2};
use self::Pixel::*;

fn main() -> hdf5::Result<()> {
 let file = hdf5::File::create("pixels.h5")?;

 let colors = file.new_dataset::<Color>().create("colors", 2)?;
 colors.write(&[RED, BLUE])?;

 let group = file.create_group("dir")?;
 let pixels = group.new_dataset::<Pixel>().create("pixels", (2, 2))?;
 pixels.write(&arr2(&[
 [
 Pixel { xy: (1, 2), color: RED },
 Pixel { xy: (3, 4), color: BLUE },
],
 [
 Pixel { xy: (5, 6), color: GREEN },
 Pixel { xy: (7, 8), color: RED },
],
]))?;
 Ok(())
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 34/36

Example - reading from file

fn main() -> hdf5::Result<()> {
 let file = hdf5::File::open("pixels.h5")?;

 let colors = file.dataset("colors")?;
 assert_eq!(colors.read_1d::<Color>()?, arr1(&[RED, BLUE]));

 let pixels = file.dataset("dir/pixels")?;
 assert_eq!(
 pixels.read_raw::<Pixel>()?,
 vec![
 Pixel { xy: (1, 2), color: RED },
 Pixel { xy: (3, 4), color: BLUE },
 Pixel { xy: (5, 6), color: GREEN },
 Pixel { xy: (7, 8), color: RED },
]
);
 Ok(())
}

HDF5 European Workshop for Science and Industry, ESRF (2019) 35/36

What's next

Already done but not merged in yet:

— LZF integration (builds with system compiler)

— Blosc interation (builds with CMake)

— LZF & Blosc filters rewritten in pure Rust

— Filter pipeline rewrite with lzf/blosc support

— Full DCPL / DAPL support

— Selections rewrite, support pointwise / regular HS (WIP)

— Unlimited selections support for VDS (WIP)

Next:

— Finish selections

— Full attributes HL support

— Support all remaining plist types

— Const generics when they land

— ...

HDF5 European Workshop for Science and Industry, ESRF (2019) 36/36

