
Real-world HDF5:
applications in finance
Ivan Smirnov

HDF5 European Workshop for Science and Industry, ESRF (2019) 1/16

Financial data

— External (captured):

— Market data

— Reference data

— Internal (generated):

— Computation results

— Pipeline caches

— Preprocessed data
HDF5 European Workshop for Science and Industry, ESRF (2019) 2/16

Market data

— Native market data (event-level)

— Market data from external providers

— Reference/static data

— Captured and stored daily

— Most downstream tasks use market data

HDF5 European Workshop for Science and Industry, ESRF (2019) 3/16

Native market data

— Raw packets captured at the exchange

— Each exchange has its own protocol

— Message-based, nested, not tabular

— ... but can be tabularized with a bit of work

— Can be used to "replay" the market

HDF5 European Workshop for Science and Industry, ESRF (2019) 4/16

Data normalization

— Direct approach to replaying market data:

— Decode the raw packet stream for a particular day

— A proper parser has to be used for that exchange/day

— Feed decoded packets to exchange-specific book builder

— Alternatively:

— Decode packet stream, convert to format-agnostic HDF5

— Use book builder to generate exchange-agnostic HDF5

— Can build applications on top that don't have to worry about all
the low-level details

HDF5 European Workshop for Science and Industry, ESRF (2019) 5/16

Market data and HDF5

— Raw data / format-agnostic / exchange-agnostic

— Hierarchy of exchanges, products, dates, etc

— Attributes to store metadata

— Write speed doesn't matter (to jobs)

— Read speed does matter (to users)

— Very compressable with shuffling (e.g. ~10x)

— 1-10GB/day/stream compressed HDF5
HDF5 European Workshop for Science and Industry, ESRF (2019) 6/16

Internal data and HDF5

— Storing and sharing source data and results

— HDF5-based cache for computation pipelines

— Storing structured application logs

— Single data format to rule them all

HDF5 European Workshop for Science and Industry, ESRF (2019) 7/16

Why HDF5?

— Cross-platform, cross-language

— Self-contained and schema-less

— Great Python support (h5py)

— Awesome compression (blosc)

— Low entry barrier

— Reasonably fast reads

HDF5 European Workshop for Science and Industry, ESRF (2019) 8/16

?..

HDF5 European Workshop for Science and Industry, ESRF (2019) 9/16

Too many fields?..

If you try to create a dataset with a few 1000s of fields:

Unable to create dataset (object header message is too large)

Can anything be done about the 64K limit?..

HDF5 European Workshop for Science and Industry, ESRF (2019) 10/16

Structured types in C++: simpler API?..

— Serializing/reading arrays of C/C++ structs requires
manually creating CompType at runtime

— Downstream users need to do that as well

— Gets much worse with nested structs/classes

— Special types (enums) need to be mapped manually

— Lots of boilerplate, not very scalable

HDF5 European Workshop for Science and Industry, ESRF (2019) 11/16

Simplified C++ hack interface with type mapping:

// shape.h

enum class Colour : uint8_t {
 Red = 1,
 Blue = 2
};

H5_DEFINE_ENUM_TYPE(Colour, Red, Blue)

struct Shape {
 uint32_t n_edges;
 int8_t label;
 double weight;
 Colour colour;
};

H5_DEFINE_COMPOUND_TYPE(Shape, n_edges, label, weight, colour)

HDF5 European Workshop for Science and Industry, ESRF (2019) 12/16

Can be now used as:

#include <shape.h>

...
 // write:
 std::vector<Shape> shapes;
 // ...
 auto file = H5::H5File("shapes.h5", H5F_ACC_TRUNC);
 h5::write_array(file, "shapes", shapes);

 // read:
 std::vector<Shape> shapes = h5::read_array(file, "shapes");

How it works:

— Macros generate specializations for h5::type_descriptor<T>

— Built-in specializations for all primitive types

— Downstream code can make use of upstream specializations

HDF5 European Workshop for Science and Industry, ESRF (2019) 13/16

Multi-threaded reading/writing?..

— Anything simpler than MP/MPI for parallel access?..

— Multi-process columnar access is not fun; may result
in lots of copying

— A stripped-down multi-threaded read-only version of
the library?..

— Writing (logging) to different files in multiple
threads?..

HDF5 European Workshop for Science and Industry, ESRF (2019) 14/16

Faster metadata lookup for partitioned data?..

— For highly partitioned data (10Ks of datasets),
metadata lookup/access time becomes noticeable

— Repacking metadata in larger blocks doesn't help

— What's the idiomatic way of dealing with this?..

HDF5 European Workshop for Science and Industry, ESRF (2019) 15/16

Blosc support in h5py?..

— Blosc = the best compression filters (!)

— h5py = the most popular HDF5 interface (!)

— No easy way to link both (")

— h5py/#611 (2015) - most commented/upvoted issue

— Can c-blosc be shipped with h5py?.. HDF5?..

— venv/conda-friendly HDF5 plug-in discovery system?

HDF5 European Workshop for Science and Industry, ESRF (2019) 16/16

