

HDF Group ESRF September 2019 Kita-OIO SDS Integration

September 2019

About OpenIO

OpenIO SDS + KITA

Demo

OpenIO

OpenIO ID

Founded in 2015

Quickly growing across geographies and vertical markets

40+

Large customers

Deployments from 3 nodes up to 40 Petabytes and tens of billions of objects

Continents

HQ Lille

Offices Paris, Tokyo

Teams across EMEA & Japan

Recognition & awards:

40

Employees

Mostly R&D, Support, tech people

Growing fast

3 Investors

OpenIO selected as Cloud start-up to follow closely, March 2019

OpenIO Vision and Mission

Vision:

We envision a data-centric world where OpenIO is recognized as the universal storage solution for unstructured data

Mission:

OpenIO's mission is to deliver an open source, high performance object storage solution that meets the demanding needs of customers working with **HPC**, **Big Data** and **AI**

OpenIO SDS and HDF Kita Jean-François Smigielski OpenIO- CTO

Storage Landscape in HPC

OIO-Object Storage

Cost effective-Scalable Very High throughput

Tape

Offline copies

High Latencies

Cold, Warm, Immutable Low \$/GB High Latency

Network Attached Storage

POSIX / File

Medium-Latency

Average Scalability

Storage Area Network

Block Storage- Low Latency

High Throughput

Hot, Mutable High \$/GB High concurrency Low Latency

Parallel FS

MPI-IO capable

Very-Low Latency

Very-High throughput

Why object storage to fill the gap? TCO!

1/ What is Object Storage

- Unstructured Immutable Data + Metadata
- High Parallelism
- 100% Online Dataset
- Cloud-oriented, ideal for large scale
- *De facto* standards: S3 (AWS), Swift (Openstack)

2/ Meanwhile, in HPC...

- S3/Swift are not standards, HDF5 & MPI-IO are
- HDF5 was not designed to work with objects
- Huge mutable datasets
- Lower TCO would be appreciated

3/ How can it integrate?

- Hierarchically, behind a primary fast tier
- Independant tiers with data movements orchestrated

4/ KITA, the necessary middleware

- Persist mutable datasets as immutable objects!
- Independant Object Storage, with HDF5 as an orchestrator (import / export)

Why OpenIO? We Think Different!

ConsciousGrid[™] technology

Never rebalance:

Scale up and out in small or large increments and on any hardware that you choose, while maintaining consistent high performance

Directory with indirections

Track containers and not objects:

OpenIO

Grid of nodes

Real-time load balancing for optimal data placement, more efficient than a ring-based architecture

Open Source & HW agnostic

Avoid vendor lock-in and keep control of your data

Open source guarantees the continuity of the solution and gives your engineers the opportunity to understand how the tech works

Being hardware agnostic allows better capacity planning and improve your TCO

ep e nd

KITA/OIO Integration Architecture

Kita's Architecture

Client SDKs for Python and C are drop-in replacements for libraries used with local files.

No significant code change to access local and cloud based data.

Kita / OIO Similar Architectures

What if we just juxtapose both?

OpenIO

Step 1: Easy Integration

Let's configure a single load-balanced endpoint for the persistence backend

- Many redundant scalability patterns (caching, sharding, load-balancing)
- Huge bandwidth usage: any stream is repeated
- 2 autonomous clusters with deployment patterns
 - Stateless, with K8s or Docker Swarm for Kita
 - Stateful, with Ansible on bare-metal for OpenIO

Barely acceptable for functional validation purposes, as a first step.

Step 2: Tighter Integration

Kita / OIO: Benefits of a Tight Integration

Kita / OIO: A (not so) Imaginary Use Case

- A scientist visits a research facility and he/she starts a new experiment on an existing run
- The test happens, data are dumped on a fast buffer storage (Parallel FS)
- Soon after, copies are made on the secondary storage (Tape)
- Preliminary validations are performed on the data in the fast buffer
- His/Her long stay comes to an end, he/she returns with a pile of BluRay/DVD
- The data is flushed from the buffer.

- A scientist visits a research facility and he/she starts a new experiment on an existing run
- The test happens, data are dumped on a fast buffer storage (Parallel FS)
- Soon after, copies are made on the secondary storage (Private Cloud) and data is flushed from the buffer
- Preliminary validations are performed from the cloud
- His/Her short stay comes to an end, he/she returns with credentials to the cloud.

Much smaller and cheaper Buffer needed! Better user experience!

Want to learn more?

Contacts

- jean-francois.smigielski@openio.io
- marielaure.retureau@openio.io
- dax.rodriguez@hdfgroup.org

Try out Kita for free in our JupyterLab environment:

– See: <u>http://www.hdfgroup.org/hdfkitalab/</u>

Learn more about HDF Kita: https://www.hdfgroup.org/solutions/hdf-kita/

Learn more about OpenIO SDS: <u>https://www.openio.io/product/product-overview</u>