
Stéphane POIRIER

HDF5 @ SOLEIL

Raphaël GIRARDOT

Agenda

History of NeXus/HDF5 @ SOLEIL

Current status

Recording services

Data analysis services

History of NeXus/HDF5 @ SOLEIL

Up to a recent past, the Synchrotron scientific community
(very conservative people!) used to write data in simple
ASCII files.

Before begining of operations in 2005 we take the decision
to choose a data format that:

 allow storing metadata along with experimental data

 can deal with large data sets

 accept any kind of data (n-Dimention, wide range of data types)

 propose self-described data sets (data sets properties)

 is efficient (obviously!)

We looked at CBF, NetCDF, NeXus and choose this later with
HDF5 as underlying physical format. Note that NeXus is just
a nomenclature, a set of names related to some scientific
domain of experiences.

Current status

NeXus/HDF5 data format is the « standard » at SOLEIL

 > 10 millions files

 Almost all beamlines (25 out of 30) record data in NeXus/HDF5
files

 in 15 beamlines: systematically for raw data

 in the last 10: depending on the context (instrument, ...)

Storage System status,05/13/2019
Number of files Data volume

Current status

SOLEIL use Tango as its control system for the accelerators
and the beamlines,

Recording is managed using a set of Tango 'devices'

 'devices' are pieces of software able to communicate to each
other using on the software bus and to control physical
equipements

Each device that need to record experimental data or
metadata uses a C++ library: libNexusCPP, developped at
SOLEIL.

Recording service

 Originally built on top of the libNeXus provided by the NeXus Advisory
Commetee (NIAC).

 But the NIAC had stopped the devloppement of this library. Therefore
the libNeXusCPP was re-written on top of the CPP HDF5 lib.

 The current version

 is based on HDF5 1.8.x

 Can create/read/write Nexus files

 For experimental data, propose synchronous or asynchronous streaming
API

 Can use Posix locks to manage concurrent access

Spools
(on NFS)

Recording service

4. All data are merged
into the final NeXus/HDF5 file

1. The metadata recorder
 creates the NeXus/HDF5 file
 collects and writes metadata

Experimental & contextual data flow for continuous scans (Flyscan)

metadata

5. Optional online
preprocessing

raw data

Metadata recorder
(use libNeXusCPP)

use fcntl(F_WRLCK)

use fcntl(F_RDLCK)

preprocessed
data

Storage
(on NFS)3. The data merger asynchronously

reads the closed data files from
the primary pool

Data merger
(use libNeXusCPP)

2. NeXus/HDF5 files containing the experimental data
are continuously written on a set of spools in temporary
files using an sync/async stream mode

Acquisition device
(use libNeXusCPP)

Acquisition device
(use libNeXusCPP)

Acquisition device
(use libNeXusCPP)

streaming data of
mainly 2D detectors.
up to 1Gb/s today

Flyscan control

START

START

use fcntl(F_RDLCK)

7. Online viewing

6. Processed data are injected
like raw data into the pipeline

START

Recording service: Conclusion/Next steps

HDF5 as a very fast/efficient/reliable API and data container

Switching to 1.10.x but all client applications need to
migrate first (it's on the way).

Make use of a compression algorithm (probably LZ4)

 At least for temporary files

Using Virtual datasets (is it possible through the CPP API?)

 Today we ‘simulate’ this functionnality for very large datasets

Using HDF5 SWMR for better locking efficiency.

Aligning HDF5 files to the NeXus Application Definitions

Data analysis

 We use HDF5 as a very efficient API and data container

 We choose NeXus because it offer a standard data organization (at group
level)

 We don't try to strictly respect dataset names as defined by the NIAC

 Our experience showed that it's almost impossible to standardize dataset
names accross all beamlines

 The CDMA (Common Data Model Access) API is an effective solution to this
issue

 Data format abstraction toolkit based on a dictionary mechanism, for names and
paths between data files and data processing applications

Data analysis services: history

ActionJava used fors SAXS data analysis until 2008

 Developed by a single person on a beamline

 Integrates Tango control functionalities

 Hard to maintain and not integrated in ICA standard software

 ICA decided to develop Foxtrot end 2008

 Main decision: this software will have to treat data stored in
NeXus/HDF5 files

 Foxtrot V1 delivered on September 2009

Data analysis services: history

 ICA group is in charge of mainting Foxtrot since 2009

 Migration to COMETE graphical framework with Foxtrot V2 (2010)

 Feedbacks done by SWING beamline

 More flexibility offered to beamline users

 Possibility to define their own ImageJ macros for data analysis

 Possibility to launch application on personnal computer

 Application can be downloaded by users outside of SOLEIL

 Difficulties appeared:

 Application is based on the very architecture of the NeXus/HDF5 files.

 It is not practical to use it « as is » on other beamlines.

Data analysis services: Problems

How may my application work with other NeXus/HDF5 files
that don’t have the same architecture as mine ?

 I want to collaborate with people that don’t use HDF5 files,
but need the same kind of application as mine to work with
their files. What can I do ?

Data analysis services: CDMA
 In 2010, the CDMA project started in collaboration with ANSTO

Data Analysis

Application
n°1

Common Data Access API

SOLEIL
NeXus plugin

data format X
plugin

data format Y
plugin

SOLEIL
Nexus

netCDF EDF

Data Analysis
Application
n°2

Data Analysis
Application
n°3

« Scientific » keyword
dictionary of the application

A

Mapping dictionary

Data analysis services: other software

Flamenco software development started in 2010

 Relies on CDMA and Comete

 Uses the same ImageJ macros extension module as Foxtrot

 Works with spectrum stacks instead of image stacks.

As the data analysis need became stronger and stronger, with
custom software, on various beamlines, it was decided to
develop the « Fusion » data reduction framework

 Graphical components Library

 Data treatment library

 Common way to use CDMA

Data analysis services: current state

 ImageReducer (core of Foxtrot) and SpectrumReducer (core of
Flamenco)

 Deployed on all beamlines

 Operational, according to the disponibility of nexus files and the
adapted dictionary

 Some beamlines have their custom data reduction software
(specific data reduction plugins) : ANTARES, CRISTAL, DIFFABS,
HERMES, LUCIA, ROCK, SEXTANTS, SIRIUS, SWING

Java version of CDMA migrated to HDF5 1.10

 Use of SWMR for parallel data treatment

Data analysis services: next steps

Move to HDF5 1.10.X for C/C++ CDMA APIs

Align C++ CDMA API to the current java version

 Implement a Python 3 CDMA API

Management of datasets splitted into many HDF5 files

Work on global performances

Questions?

