
Stéphane POIRIER

HDF5 @ SOLEIL

Raphaël GIRARDOT



Agenda

History of NeXus/HDF5 @ SOLEIL

Current status

Recording services

Data analysis services



History of NeXus/HDF5 @ SOLEIL

Up to a recent past, the Synchrotron scientific community 
(very conservative people!) used to write data in simple 
ASCII files.

Before begining of operations in 2005 we take the decision 
to choose a data format that:

 allow storing metadata along with experimental data

 can deal with large data sets

 accept any kind of data (n-Dimention, wide range of data types)

 propose self-described data sets (data sets properties)

 is efficient (obviously!)

We looked at CBF, NetCDF, NeXus and choose this later with 
HDF5 as underlying physical format. Note that NeXus is just 
a nomenclature, a set of names related to some scientific 
domain of experiences.



Current status

NeXus/HDF5 data format is the « standard » at SOLEIL

 > 10 millions files

 Almost all beamlines (25 out of 30) record data in NeXus/HDF5 
files

 in 15 beamlines: systematically for raw data

 in the last 10: depending on the context (instrument, ...)

Storage System status,05/13/2019
Number of files Data volume



Current status

SOLEIL use Tango as its control system for the accelerators 
and the beamlines,

Recording is managed using a set of Tango 'devices'

 'devices' are pieces of software able to communicate to each 
other using on the software bus and to control physical 
equipements

Each device that need to record experimental data or 
metadata uses a C++ library: libNexusCPP, developped at 
SOLEIL.



Recording service

 Originally built on top of the libNeXus provided by the NeXus Advisory 
Commetee (NIAC). 

 But the NIAC had stopped the devloppement of this library. Therefore 
the libNeXusCPP was re-written on top of the CPP HDF5 lib.

 The current version

 is based on HDF5 1.8.x

 Can create/read/write Nexus files

 For experimental data, propose synchronous or asynchronous streaming 
API

 Can use Posix locks to manage concurrent access



Spools
(on NFS)

Recording service

4. All data are merged
into the final NeXus/HDF5 file

1. The metadata recorder
 creates the NeXus/HDF5 file
 collects and writes metadata

Experimental & contextual data flow for continuous scans (Flyscan)

metadata

5. Optional online
preprocessing

raw data

Metadata recorder
(use libNeXusCPP)

use fcntl(F_WRLCK)

use fcntl(F_RDLCK)

preprocessed
data

Storage
(on NFS)3. The data merger asynchronously

reads the closed data files from
the primary pool

Data merger
(use libNeXusCPP)

2. NeXus/HDF5 files containing the experimental data 
are continuously written on a set of spools in temporary
files using an sync/async stream mode

Acquisition device
(use libNeXusCPP)

Acquisition device
(use libNeXusCPP)

Acquisition device
(use libNeXusCPP)

streaming data of
mainly 2D detectors.
up to 1Gb/s today

Flyscan control

START

START

use fcntl(F_RDLCK)

7. Online viewing

6. Processed data are injected
like raw data into the pipeline

START



Recording service: Conclusion/Next steps

HDF5 as a very fast/efficient/reliable API and data container

Switching to 1.10.x but all client applications need to 
migrate first (it's on the way).

Make use of a compression algorithm (probably LZ4)

 At least for temporary files

Using Virtual datasets (is it possible through the CPP API?)

 Today we ‘simulate’ this functionnality for very large datasets

Using HDF5 SWMR for better locking efficiency.

Aligning HDF5 files to the NeXus Application Definitions



Data analysis

 We use HDF5 as a very efficient API and data container

 We choose NeXus because it offer a standard data organization (at group 
level)

 We don't try to strictly respect dataset names as defined by the NIAC

 Our experience showed that it's almost impossible to  standardize dataset 
names accross all beamlines

 The CDMA (Common Data Model Access) API is an effective solution to this 
issue

 Data format abstraction toolkit based on a dictionary mechanism, for names and 
paths between data files and data processing applications



Data analysis services: history

ActionJava used fors SAXS data analysis until 2008

 Developed by a single person on a beamline

 Integrates Tango control functionalities

 Hard to maintain and not integrated in ICA standard software

 ICA decided to develop Foxtrot end 2008

 Main decision: this software will have to treat data stored in 
NeXus/HDF5 files

 Foxtrot V1 delivered on September 2009



Data analysis services: history

 ICA group is in charge of mainting Foxtrot since 2009

 Migration to COMETE graphical framework with Foxtrot V2 (2010)

 Feedbacks done by SWING beamline

 More flexibility offered to beamline users

 Possibility to define their own ImageJ macros for data analysis

 Possibility to launch application on personnal computer 

 Application can be downloaded by users outside of SOLEIL

 Difficulties appeared:

 Application is based on the very architecture of the NeXus/HDF5 files.

 It is not practical to use it « as is » on other beamlines.



Data analysis services: Problems

How may my application work with other NeXus/HDF5 files 
that don’t have the same architecture as mine ?

 I want to collaborate with people that don’t use HDF5 files, 
but need the same kind of application as mine to work with 
their files. What can I do ?



Data analysis services: CDMA
 In 2010, the CDMA project started in collaboration with ANSTO

Data Analysis 

Application 
n°1

Common Data Access API

SOLEIL 
NeXus plugin

data format X 
plugin

data format Y 
plugin

SOLEIL 
Nexus

netCDF EDF

Data Analysis 
Application 
n°2

Data Analysis 
Application 
n°3

« Scientific » keyword 
dictionary of the application

A

Mapping dictionary



Data analysis services: other software

Flamenco software development started in 2010

 Relies on CDMA and Comete

 Uses the same ImageJ macros extension module as Foxtrot

 Works with spectrum stacks instead of image stacks.

As the data analysis need became stronger and stronger, with 
custom software, on various beamlines, it was decided to 
develop the « Fusion » data reduction framework

 Graphical components Library

 Data treatment library

 Common way to use CDMA



Data analysis services: current state

 ImageReducer (core of Foxtrot) and SpectrumReducer (core of 
Flamenco)

 Deployed on all beamlines

 Operational, according to the disponibility of nexus files and the 
adapted dictionary

 Some beamlines have their custom data reduction software 
(specific data reduction plugins) : ANTARES, CRISTAL, DIFFABS, 
HERMES, LUCIA, ROCK, SEXTANTS, SIRIUS, SWING

Java version of CDMA migrated to HDF5 1.10

 Use of SWMR for parallel data treatment



Data analysis services: next steps

Move to HDF5 1.10.X for C/C++ CDMA APIs

Align C++ CDMA API to the current java version

 Implement a Python 3 CDMA API

Management of datasets splitted into many HDF5 files

Work on global performances



Questions?


