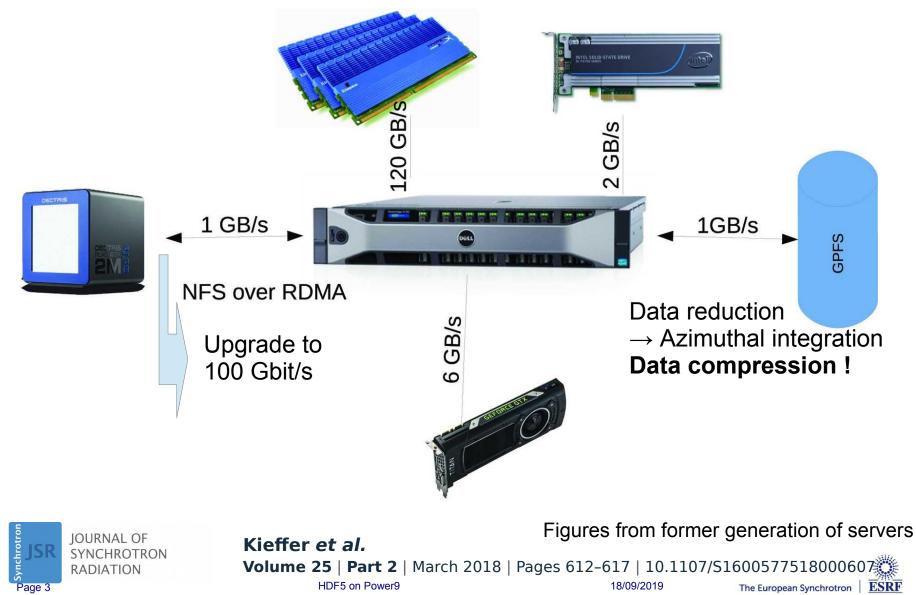
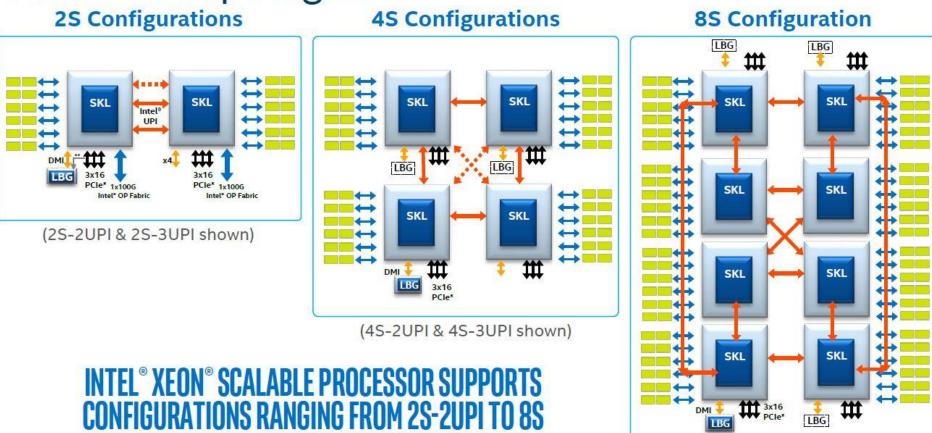
Investigations on hardware compression of IBM Power9 processors

The European Synchrotron

Jérome Kieffer, Pierre Paleo, Antoine Roux, Benoît Rousselle


Outline

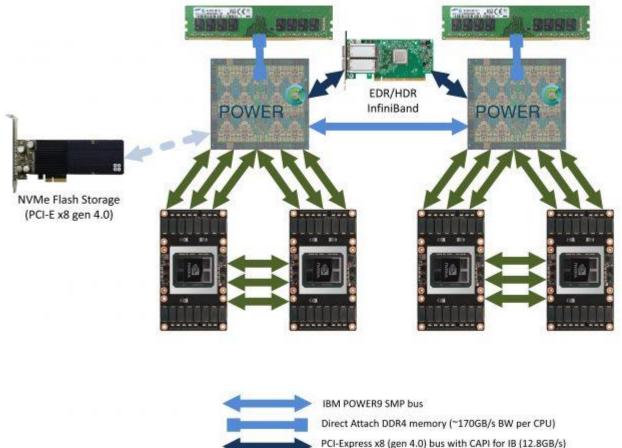
- The bandwidth issue at synchrotrons sources
- Presentation of the evaluated systems:
 - Intel Xeon vs IBM Power9
 - Benchmarks on bandwidth
- The need for compression of scientific data
 - Compression as part of HDF5
 - The hardware compression engine NX-gzip within Power9
 - Gzip performance benchmark
 - Bitshuffle-LZ4 benchmark
 - Filter optimizations
 - Benchmark of parallel filtered gzip
- Conclusions
 - on the hardware
 - on the compression pipeline in HDF5


Bandwidth issue at synchrotrons sources

Data analysis computer with the main interconnections and their associated bandwidth.

Platform Topologies

Source: intel.com



Architecture of the AC922 server from IBM featuring Power9

Server Block Diagram

Power Systems AC922 with NVIDIA Tesla V100 with Enhanced NVLink GPUs

PCI-Express x8 (gen 4.0) bus with CAPI for IB (12.8GB/s) 1x PCI-E x8 4.0 from each CPU to IB (multi-socket host direct)

PCI-Express x8 (gen 4.0) bus with CAPI (12.8GB/s)

25GB/s NVIDIA NVLink Interconnect (50GB/s bi-directional) 75GB/s of bandwidth between points (3 links)

Bandwidth measurement: Xeon vs Power9

Computer	Dell R840	IBM AC922
Processor	4 Intel Xeon (12 cores) 2.6 GHz	2 IBM Power9 (16 cores) 2.7 GHz
Cache (L3)	19 MB	8x 10 MB
Memory channels	4x 6 DDR4	2x 8 DDR4
Memory capacity	→ 3TB	→ 2TB
Memory speed theory	512 GB/s	340 GB/s
Measured memory speed	160 GB/s	270 GB/s
Interconnects	PCIe v3	PCIe v4 NVlink2 & CAPI2
GP-GPU co-processor	2Tesla V100 PCIe v3	2Tesla V100 NVlink2
Interconnect speed CPU ↔ GPU	12 GB/s	48 GB/s

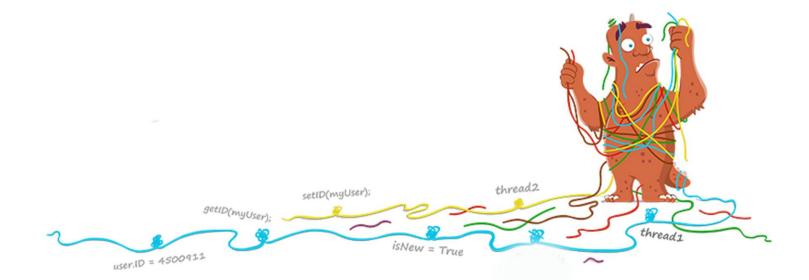
Strength and weaknesses of the OpenPower architecture

While amd64 is today's *de facto* standard in HPC, it has a few competitors: arm64, ppc64le and to a less extend riscv and mips64.

• Strength of IBM Power9 vs Intel Xeon:

- Huge bandwidth everywhere: memory, Nvlink2, PCiev4, OpenCAPI
- Easy to recompile since the Power9 is little-endian
- Open source everywhere, down to the architecture (ISA)
- Runs the two fastest computer in the world: *Summit* & *Sierra*
- Competitive in price
- Weaknesses of IBM Power9 vs Intel Xeon:
 - Much smaller user base
 - Virtually No commercial software available
 - Limited size vector instruction set. ALTIVEC ≈ SSE2 128bits SIMD
 - Less optimized code

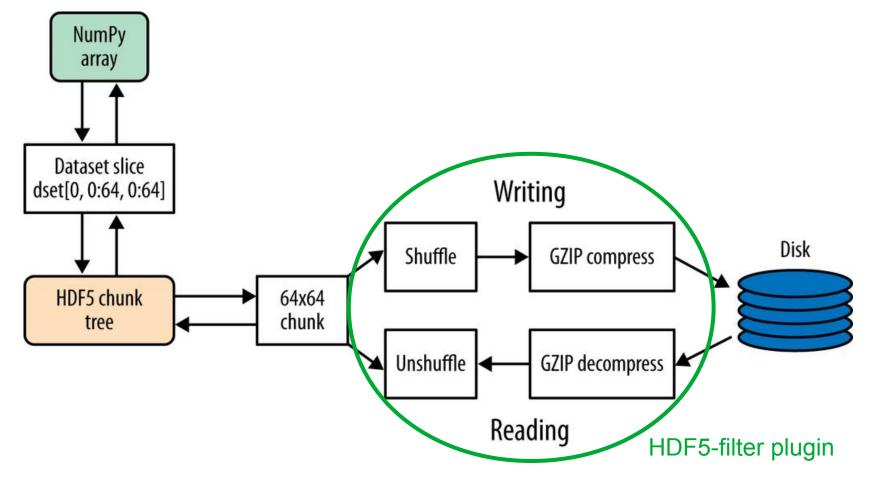
Page 9


Use-case: images acquired by fast 2D detectors

The need for compression of scientific data

Especially true for large raw data coming directly from detector:

- **Unbiased:** lossy compression must not bias the data
- **Nearly lossless:** must not decrease the sensitivity of the data.
- Fast decompression decompress must be faster than I/O.
- Threaded: multi-threaded (de-)compression for performance
- **Thread-safe:** one day, HDF5 may become multi-threaded (we all hope)


K.Masui et al. / Astronomy and Computing 12 (2015)181–190

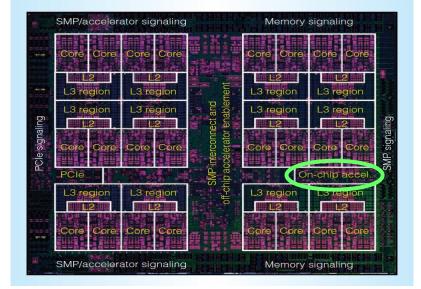
18/09/2019

 $\Delta \Delta$

FAS

"The SHUFFLE filter is [...] very, very fast (negligible compared to the compression time)"

Python and HDF5 by Andrew Collette

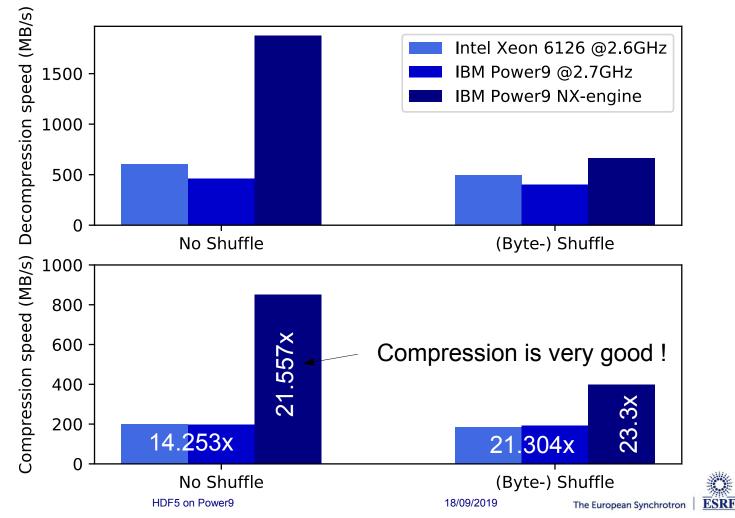


18/09/2019

ESRF

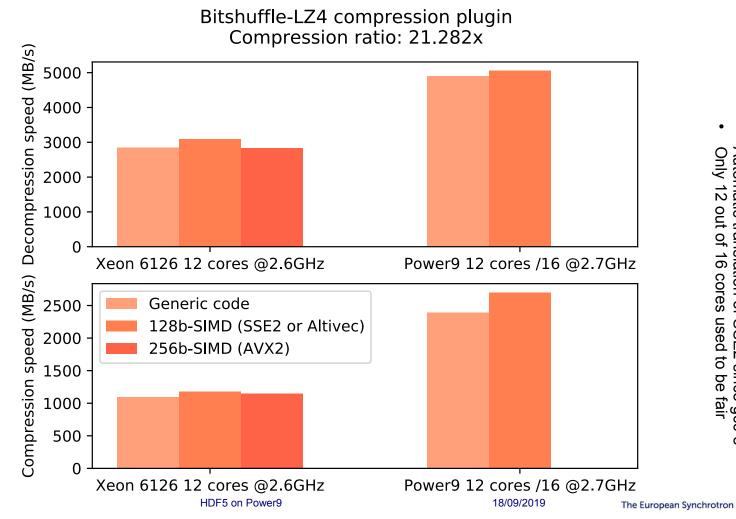
The NX hardware accelerator of Power9

- One NX-engine per Power9 processor
 - Industry standard gzip (deflate)
 - Up to 16 GB/s of gzip or gunzip
 - Source code available: https://github.com/abalib/power-gzip.git
 - Just LD_PRELOAD=libnxz.so
 - Works out of the box with HDF5
- Example used for the benchmark:
 - Lysozyme dataset provided by Dectris for their Eiger4M
 - 1800 frames of 2167x2070 uint32 (4 bytes/pixel)
 30 GByte raw data
 - Initially compressed with first generation LZ4 HDF5 plugin
 5GByte compressed data (6.23x compression ratio)



Performance of the NX-compressor used with HDF5

- Software: libhdf5 1.10.5 with gzip compression level 1:
 - Only 1 core is used: HDF5 is single threaded
 - The shuffle filter kills the performances of the NX-engine


HDF5 filter plugins

- Importance of the compressor stage:
 - Bzip2, gzip, lz4, ... new compressors are under development
- Importance of the pre-filter stage:
 - Shuffle ! Bitshuffle ? Delta ?
 - Issue for building the HDF5 plugin (acces to datatype size)
- The Blosc library (→ talk from Francesc Alted)
 - HDF5 plugin already exists
 - "Raw" filters and compressors are available
 - Currently C-blosc2 beta4
 - SIMD implementation are available for better performances
 - GCC-8 offers "SSE2 → ALTIVEC" code translation
- Few question are remaining ...
 - How fast are actually those filters ?
 - Does the implementation matter ?

Bitshuffle-LZ4 plugin (used in newer Eiger firmwares)

- Without pre-filtering, the compression ratio were not that great.
 - Bit-shuffling increases even further the compression ratio ($6x \rightarrow 21x$)
 - Coupled with the fast Iz4 compressor & multi-threaded

Ine

Power

lacks

wider

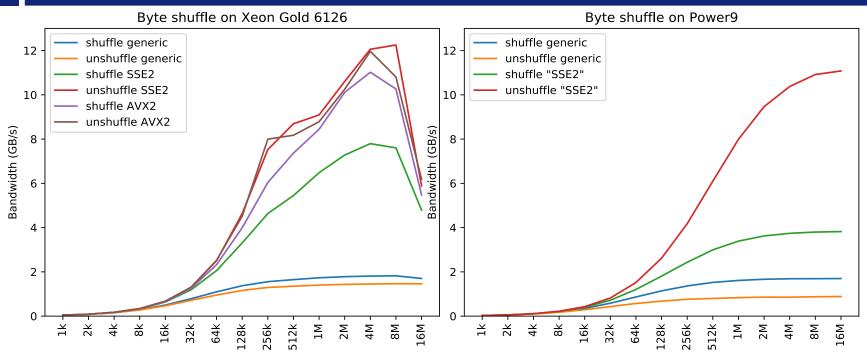
MD

like

ESRF

9cc-8

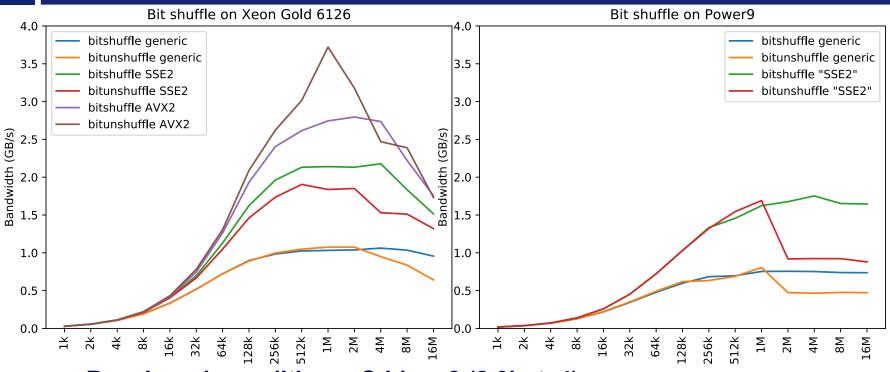
Automatic


trans G

lation of

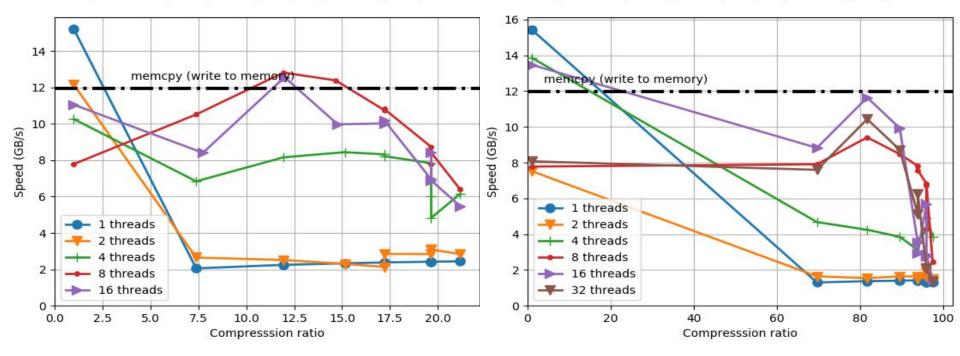
12 out of

16 cores


Blosc-2: Bandwidth of the shuffle filter

- Benchmark conditions: C-blosc2 (2.0beta4)
 - One thread, various sizes to probe the cache
 - 4 bytes per data (int32)
 - Shuffle requires 2 buffers *in* and *out*
 - Python / *timeit* (best of 5) + *ctypes* bindings

Blosc-2: Bandwidth of the bitshuffle filters


- Benchmark conditions: C-blosc2 (2.0beta4)
 - One thread, various sizes to probe the cache
 - 4 bytes per data (int32)
 - Bitshuffle requires 3 buffers
 - Python / timeit (best of 5) + ctypes bindings

Multi-threaded filters + hardware gzip

Compression speed (4.0 MB, 4 bytes, 19 bits), zlib, shuffle

Compression speed (4.0 MB, 4 bytes, 19 bits), zlib, bitshuffle

- Best performances obtained: 12 GB/s speed
 - Operating on one socket out of 2
 - All cores of the socket used but without SMT
 - Moderate compression level=2
 - Much better compression for bitshuffle than shuffle

Conclusion on the computers

- About the Power9 architecture
 - All tested code run after simple recompilation
 - Automatic SSE2 \rightarrow ALTIVEC code translation since gcc-8
 - Probably not as good as native ALTIVEC code
 - The Power9 wins where bandwidth maters
 - The hardware compression engine does the complex job for free
 - Python and other interpreted languages are slower

• About the Dell R840

- 3TB of RAM !
- Memory bandwidth is only a third of theoretical value
- Limited by PCIe v3 bandwidth
- The R840 runs much warmer than the R740 (2 processors)
- The size of the cache L3 of the processor matters !

Conclusion on HDF5's compression framework

- No support for multi-core computers ?
 - Multi-threading, OpenMP
- Gzip/shuffle implemented in 2002
 - left untouched since then ?
 - SIMD implementation are missing for shuffle
- Many compression features are missing like:
 - Bitshuffle, proven supperior to shuffle
 - Many compressors are missing while free to redistribute
 - Why are they not provided by the HDFgroup ?
 - Plugins are not actual plugins ... but libraries !
 as they are linked to only ONE version of HDF5 !
- Tested from python/h5py
 - Whould the picture be different if tested from C or C++?

Acknowledgments

- IBM:
 - Thibaud Besson
 - Bruno Mesnet
 - Alexandre Castellane
 - Fabrice Moyen
 - Jean-Pierre Rascalou
 - Pascal Vezolle
 - Frederic Barrat
 - Laurent Vanel
- Scasicomp:
 - Marc Ruhlmann
 - Martin Poupon

- Blosc:
 - Francesc Alted
- ESRF:
 - Andy Götz
 - V. Armando Solé

