
Ntuple: Tabular Data in HDF5 with C++

Chris Green and Marc Paterno

HDF5 Webinar, 2019-01-24

Origin and motivation

Particle physics analysis often involves the creation of Ntuples, tables of (usually

complicated) columnar data.

Meaning of “row” flexible, but consistent within a table (“collision,” “time period,” “track,”

etc.).

Historical use of domain-specific analysis and visualization tools with specific binary

formats: PAW (Fortran) -> ROOT (C++).

Recent trend toward general systems like R and Python (Jupyter, pandas, etc.).

Increasing focus on HPC systems, MPI.

HDF5 would seem to be a natural choice for a flexible scientific data format.

2/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Origin and motivation

Our scientists want to code algorithms, not data handling:

HDF5 C++ interface insufficiently flexible for our purposes (e.g. not recommended for

parallel I/O).

C interface requires lots of error code checking, and can seem arcane to new users.

Need something that makes the basic trivial and the complex tractable, and reduces

boilerplate as much as possible.

Case study: LArIAT waveform analysis

LAr “Time Projection Chamber:” time-sampled wires in two orientations (u, v).

2×240 wires, 3072 samples per wire per time slice (“event”).

≈ 15.5×10
6 events.

Saved data: event ID triplet, ADC sample data for u and v planes, wire #, pedestal

(µ,σ).

3/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Ntuple overview

“Modern” C++ (>=11). Current is C++17.

Table => Group, Column => Dataset.

u_data

adc chanID pMean

Table / HDF5 Group

Column / HDF5 Dataset

Row

Element
pSigma

Columns are fixed-size arrays of basic types, fixed- or variable-length strings.

User inserts data row-wise.

4/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Ntuple overview

For each column, user will specify:

Name

Basic element type (e.g. short)

Rank (dimension) of column entries e.g. 2

Extents of column entries e.g. 240×3072

Ntuple is a C++ template: column element type and rank fixed at compile-time; names

and extents at table construction time.

Datasets have one more rank than the user specifies for the column: this is extensible,

and represents the column entries in each row. For example, our dataset of shorts has

extents (N,240,3072), where N is the number of rows written so far.

Rows are written in buffered groups.

System for writing data only: files can be read with standard tools such as h5py.

Exception-safe, featuring resource cleanup.

5/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Simple things are very simple

// Define the ntuple.

Ntuple<int, double> nt("simple.hdf5", // File.

"data", // Table name (group).

{"A", "B"} // Column names.

);

// Data to store.

std::array<int, 3> idata { 1, 2, 3 };

std::array<double, 3> ddata { 4.5, 5.5, 6.5 };

// Insert the data for 3 rows.

for (auto i = 0; i < 3; ++i) {

nt.insert(idata[i], ddata[i]);

}

6/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Simple things under the covers, tho’ . . .

H5Fcreate(); // File create.

H5Gcreate2(); // Group create.

// Dataset A (repeat from here for dataset B) ...

H5Pcreate(); // Properties for dataset A.

H5Pset_chunk(); // Chunking required.

H5Pset_deflate(); // Compression is default.

H5Screate_simple(); H5Dcreate2(); // Create dataset A.

// Per write operation:

// Extend dataset for write:

H5Dget_space(); H5Sget_simple_extent_dims(); H5Dset_extent();

// Memory dataspace:

H5Dget_space(); H5Sselect_hyperslab(); H5Screate_simple();

H5Dwrite(); // Write to dataset A.

All the H5Xclose() calls elided for “brevity.”

7/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Complicated things are still fairly simple

auto u_data =

make_ntuple({"lariat-ish.hdf5", "u_data"},

make_column<unsigned short, 2>("adc",

{240, 3072},

{PropertyList{H5P_DATASET_CREATE}

(&H5Pset_shuffle)

(&H5Pset_deflate, 7u)}),

make_column<unsigned short>("chanID", 240),

make_column<float>("pMean", 240),

make_column<float>("pSigma", 240));

auto v_data =

make_ntuple({u_data.file(), "v_data"}, ...);

// Insert data for one u row (_e.g._):

u_data.insert(u_adc.data(), chanIDs.data(), // STL vectors.

chanMean, chanSigma); // C-style arrays.

8/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Reading with Python is trivial

from h5py import File

with File("lariat-ish.hdf5", "r") as infile:

u_adc_data = infile["/u_data/adc"][slice_first:slice_last]

Analysis ...

9/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Details

template <typename...Cols> class Ntuple: variadic template for arbitrary number

of columns.

Helper functions embody more flexibility: make_ntuple(), make_column(),

make_scalar_column()

Tables can be inserted into an existing HDF5 file anywhere in the existing group

hierarchy.

Filters can be applied (and chained) and other properties customized as necessary.

Endianness can be specified.

Data organization: multi-dimensional column entries are contiguous, row-major.

Exception-safe, including resource cleanup.

10/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Performance notes

Buffering / chunking, etc. is configurable to reduce dataset extension operations.

Recommended buffer size is an integral number of chunks.

Files produced this way have been used successfully in a 76.8Kproc Python run

utilizing MPI I/O.

Read and decompress 42TiB of LArIAT waveform data in < 20s.

11/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

Other library features

Resource-managing classes for common HDF5 entities:

Dataspace

Datatype

File

Group

PropertyList

Ability to add attributes to datasets and groups.

Ntuple file concatenation utility (MPI I/O available with recent HDF5).

Error handling: allow exceptions to be thrown safely on HDF5 errors:

within the library with a single configuration call;

using a “thin-thick” wrapper function for direct HDF5 calls.

https://bitbucket.org/fnalscdcomputationalscience/hep_hpc

12/12 HDF5 Webinar, 2019-01-24 Chris Green and Marc Paterno | Ntuple: Tabular Data in HDF5 with C++

https://bitbucket.org/fnalscdcomputationalscience/hep_hpc

