
File	Open,	Close,	and	Flush	Performance	Issues	in	HDF5	

Scot	Breitenfeld	

John	Mainzer	

Richard	Warren	

02/19/18	

1 Introduction	
	

Historically,	the	parallel	version	of	the	HDF5	library	has	suffered	from	performance	

issues	on	file	open,	close,	and	flush,	which	have	typically	been	related	to	small	

metadata	I/O	issues.		While	the	small	metadata	I/O	issue	has	been	addressed	in	the	

past,	initially	by	distributing	metadata	writes	across	processes,	and	subsequently	by	

writing	metadata	collectively	on	file	close	and	flush	and	supporting	collective	

metadata	reads	in	some	cases,	the	problem	has	re-appeared	as	the	typical	number	

of	processes	in	HPC	computations	has	increased.	

	

In	this	paper,	we	outline	the	results	of	the	latest	efforts	to	address	the	metadata	I/O	

issue	and	its	effects	on	HDF5	file	open,	close,	and	flush	performance.			

	

As	shall	be	seen,	the	problems	encountered	and	our	solutions	to	them	have	ranged	

from	trivial	to	fundamental.		In	particular,	our	work	on	the	Avoid	Truncate	Issue	

suggests	a	way	to	avoid	the	small	metadata	I/O	issue	entirely,	albeit	at	the	cost	of	

increased	memory	footprint.	

2 Slow	File	Open	
	

While	investigating	other	issues,	we	noticed	that	while	the	superblock	read	on	file	

open	is	collective	when	collective	metadata	reads	are	enabled,	all	processes	

independently	search	for	the	superblock	location	–	which	at	a	minimum	means	that	

all	processes	independently	read	the	first	eight	bytes	of	the	file.	

	

As	this	is	an	obvious	performance	bottleneck	on	file	open	for	large	computations,	

and	the	fix	is	simple	and	highly	localized,	we	modified	the	HDF5	library	so	that	only	

process	0	searches	for	the	superblock,	and	broadcasts	its	location	to	all	other	

processes.				At	the	time,	we	had	not	received	recent	complaints	about	slow	file	open,	

and	thus	we	did	not	validate	the	fix	with	before	and	after	performance	studies.			

	

We	subsequently	received	a	second	hand	report	of	slow	file	open	with	very	large	

numbers	of	processes.		While	we	don’t	know	the	details	on	this	issue,	we	expect	that	

the	above	fix	will	improve	matters	significantly,	particularly	when	combined	with	

collective	metadata	reads.			

3 Duplicate	Metadata	Writes	on	Flush	and	Close	
	

A	file	close	slowdown	with	collective	metadata	writes	enabled	was	observed	after	

the	HDF5	1.10.1	release.		This	was	tracked	to	duplicate	metadata	writes	on	close	or	

flush	(once	collectively,	and	again	independently),	which	in	turn	was	tracked	to	a	

merge	error	in	the	preparation	of	HDF5	1.10.1.		The	fix	was	trivial,	and	will	be	

included	in	HDF5	1.10.2.	

	

Unfortunately,	writing	a	regression	test	for	this	issue	is	difficult.		However,	as	the	

HDF	Group	is	adding	parallel	performance	regression	tests,	we	may	hope	that	

parallel	performance	bugs	of	this	type	will	be	caught	prior	to	release	in	the	future.	

4 Long	Close	Times	for	Files	Opened	R/W	but	not	modified	
	

As	shall	be	seen	in	the	Avoid	Truncate	Bug	section	below,	we	have	observed	cases	in	

which	file	close	is	slower	for	files	opened	R/W	but	not	written	to	than	for	files	

opened	R/W	and	written	to.		From	first	principles,	file	close	in	the	former	case	

should	be	faster,	and	thus	we	presume	that	this	is	bug	that	should	be	addressed	–	

particularly	as	the	delay	is	significant	(several	seconds	in	some	cases).	

	

To	date,	we	have	not	had	the	resources	to	investigate	the	issue.	

5 Avoid	Truncate	Issue	
	

The	“avoid	truncate”	bug	dates	back	to	at	least	2009,	when	we	learned	of	a	case	in	

which	a	computation	with	either	512	or	2048	processes	was	spending	most	of	its	

time	truncating	the	HDF5	file	in	preparation	for	a	file	close	or	a	flush.		More	

generally,	similar	delays	on	HDF5	file	close	and/or	flush	have	been	observed	on	

some,	but	not	all,	Lustre	file	systems.	

	

Initial	attempts	to	resolve	this	issue	seem	to	have	assumed	that	the	fundamental	

problem	is	that	MPI_File_set_size()	is	slow	on	some	Lustre	file	systems,	and	thus	

that	the	appropriate	solution	is	to	avoid	calls	to	MPI_File_set_size()	at	file	close	

and/or	flush.		The	solutions	investigated	were	either	to	modify	the	HDF5	file	format	

to	no	longer	require	that	end	of	allocation	(EOA)	and	end	of	file	(EOF)	match	at	file	

open	or	to	call	the	POSIX	truncate()	function	from	rank	0	after	file	close	to	force	the	

EOF	to	match	the	EOA.	

	

As	shall	be	seen	on	various	systems	(Table	1),	this	presumption	that	

MPI_File_set_size()	is	the	problem	came	into	question	as	the	result	of	the	failure	of	

the	“call	POSIX	truncate()	from	rank	0”	approach	to	yield	the	expected	results.	

	

	

Host	Name	 Site	Location	 Machine	Type	 File	System	
Cori	 DOE	–	NERSC	 Cray	XC40	 Lustre	

Excalibur	 DOD	-	HPCMP	 Cray	XC40	 Lustre	
Table	1	Computer	systems	used	for	the	experiments.	

	

The	Problem	and	its	Cause	
	

Figure	1	illustrates	the	“avoid	truncate”	problem	by	comparing	the	file	close	time	of	

an	un-altered	version	of	the	HDF5	library,	with	that	of	a	version	in	which	the	call	to	

MPI_File_set_size()	is	omitted	unconditionally.		On	the	face	of	it,	it	makes	the	

solution	obvious	–	just	avoid	the	call	to	MPI_File_set_size(),	and	the	problem	goes	

away.	

	

	
Figure	1	File	close	times	for	a	file	opened	read/write	(cgp_close_WRITE)	and	read	only	(cgp_close_READ)	
for	an	un-altered	version	of	the	HDF5	library	(no	patch)	and	a	version	in	which	the	call	to	
MPI_File_set_size()	is	omitted	unconditionally	(v1).		Note	the	long	close	times	for	files	opened	R/O	as	
discussed	above.	

In	cases	in	which	datasets	are	allocated,	completely	defined,	never	deleted,	and	the	

number	of	ranks	is	a	power	of	two,	the	call	to	MPI_File_set_size()	is	usually	

unnecessary,	as	the	EOA	and	EOF	will	usually	match.		However,	in	the	more	general	

case,	we	must	truncate	the	file	on	close	so	that	EOF	equals	EOA,	as	the	HDF5	library	

checks	this	on	file	open,	and	refuses	to	open	the	files	when	this	condition	does	not	

hold	on	the	presumption	that	the	file	has	been	corrupted.		

	

One	way	around	this	issue	is	to	store	both	the	EOA	and	the	EOF,	and	simply	verify	

that	the	EOF	has	the	expected	value	on	file	open.		However,	this	option	requires	a	

file	format	change	(usually	done	only	on	major	releases	of	the	HDF5	library)	and	

introduces	some	interesting	forward	compatibility	issues,	as,	without	a	conversion	

utility,	earlier	versions	of	the	HDF5	library	would	not	be	able	to	open	files	R/W.	

	

In	an	attempt	to	sidestep	this	issue,	we	investigated	the	possibility	of	performing	the	

truncate	with	a	POSIX	truncate()	call	from	process	0	after	file	close.	The	results	were	

not	encouraging,	Table	2.		More	importantly,	the	fact	that	the	POSIX	truncate	was	

taking	longer	than	the	MPI	truncate	caused	us	to	begin	to	doubt	that	

MPI_File_set_size()	was	the	fundamental	problem.	

	

No truncate	 0.083 sec.	
MPI truncate	 45.0 sec.	
POSIX truncate	 72.1 sec.	
Table	2	File	close	time	for	3,000	processes	on	Cori	using	collective	metadata	writes.	

Acting	on	the	guess	that	the	issue	might	be	related	to	the	many	small	metadata	

writes	that	HDF5	performs	on	file	close,	we	wrote	a	simple	MPI	program	in	which	

each	process	writes	one	or	more	well-aligned	blocks	of	data,	and	then	closes	the	file	

either:	

	

1. without	calling	MPI_File_set_size(),	
2. truncating	the	file	to	its	current	length	via	a	collective	call	to	

MPI_File_set_size()	just	before	file	close,	or	

3. truncating	the	file	to	its	current	length	via	a	call	to	truncate()	after	file	close.	
		

As	there	was	almost	no	difference	between	these	three	cases,	Table	3,	the	results	of	

this	benchmark	are	consistent	with	the	hypothesis	that	the	problem	is	not	with	

MPI_File_set_size(),	but	instead	with	the	HDF5	metadata	layout.			

	

Case No.	 Time (seconds)	
1	 0.00693	

2	 0.00890	

3 0.00963
Table	3	Results	of	MPI	benchmark	on	Excalibur	for	8192	processes	in	which	each	process	writes	one	or	
more	well	aligned	blocks	collectively.		Timings	are	for	file	close	with	either:	(1)	no	truncate,	(2)	truncate	
to	current	length	via	MPI_File_set_size()	just	before	file	close,	or	(3)	POSIX	truncate()	by	process	0	just	
after	file	close.	

At	this	point	it	became	clear	that	the	“slow	H5F_File_set_size()	on	some	Lustre	

installations”	hypothesis	was	probably	false	–	and	that	if	we	wanted	to	solve	the	

problem,	we	needed	to	determine	the	fundamental	cause.	

	

To	this	end,	we	entered	into	a	lengthy	email	discussion	with	members	of	the	Lustre	

development	team	at	Intel.		After	much	back	and	forth	(and	generous	patience	on	

the	part	of	the	Lustre	team	in	general,	and	Andreas	Dilger	in	particular),	we	arrived	

at	the	following	summary	of	the	likely	cause	of	the	problem	(quoting	from	our	final	

email	exchange	with	Andreas).	

	

1) HDF5's	current	practice	of	scattering	small	(i.e.,	typically	less	than	a	few	KB)	
pieces	of	metadata	in	small	bunches	throughout	the	file,	and	then	writing	dirty	
metadata	in	a	single	collective	write	just	before	close	results	in	excessive	lock	
contention.

Further,	since	the	typical	total	size	of	this	collective	metadata	write	is	<	1	MB,	I	
gather	that	there	isn't	much	we	can	do	to	optimize	it	further	without	changing	
our	metadata	layout	on	file.		If	we	had	more	metadata,	I	gather	that	it	might	be	
useful	to	bin	the	metadata	by	the	OST	it	resides	on,	and	then	write	the	
metadata	with	one	process	writing	the	contents	of	each	bin. However,	this	is	
questionable,	due	to	the	typically	very	low	density	of	metadata	in	HDF5	files.

2) The	MPI_File_set_size()	call	that	is	made	shortly	after	the	above	collective	

metadata	write	typically	cannot	execute	until	it	obtains	locks	on	all	OSTs.		This	
requires	the	call	to	wait	until	the	above	contention	is	resolved	--	hence	the	
delays	we	have	seen	on	our	truncate	calls	at	file	close.

3) Aggregating	the	metadata	into	page	aligned	pages	of	size	some	multiple	of	1	

MB,	and	then	performing	I/O	on	the	pages	instead	of	individual	pieces	
of	metadata	should	be	a	great	win,	and	should	avoid	the	lock	contention	
mentioned	in	1).

The	aggregation	into	pages	should	still	be	useful	in	cases	where	we	cannot	use	
page	buffering	(most	likely	due	to	memory	footprint),	particularly	if	we	use	
your	new	progressive	file	layout	feature	and	pre-allocate	space	for	metadata	at	
the	beginning	of	the	file.

	
While	the	above	seemed	consistent	with	our	observations	to	date,	we	further	

discussed	the	problem	and	the	above	diagnosis	with	some	people	at	SC17	–	most	

notably	current	and	former	members	of	the	Panasas	development	team,	and	Rob	

Latham	of	ANL	/	MPICH.		The	consensus	was	that	the	above	diagnosis	is	likely	

correct.		However,	it	should	be	noted	that	as	of	our	last	communication	on	the	

subject,	Quincey	Koziol	was	still	of	the	opinion	that	the	problem	was	slow	

implementations	of	truncate	on	Lustre.	

	

As	implementing	the	changes	to	the	HDF5	library	suggested	above	will	not	be	trivial,	

we	also	wrote	another	pair	of	MPI	test	programs	comparing	the	following	scenarios:	

	

1) Large	chunks	of	data	are	interspersed	with	randomly	scattered	small	clusters	
of	small	(i.e.	<	5	KiB)	pieces	of	data	totaling	1	–	2	MiB.		Large	data	is	written	

in	several	collective	writes.		Small	data	is	also	written	collectively	just	before	

file	close,	with	at	most	one	piece	of	small	data	per	process.		File	is	truncated	

to	its	current	size	at	close	via	MPI_File_set_size()	

	

2) Small	pieces	of	metadata	are	collected	into	one	or	two	well	aligned	1	MiB	
blocks.		Large	data	is	written	as	before.		Small	data	is	written	collectively	at	

file	close	with	one	or	two	processes	each	writing	a	1	MiB	block,	with	all	other	

processes	participating	in	the	write,	but	not	contributing.		File	is	truncated	to	

its	current	size	just	prior	to	close	via	MPI_File_set_size().	

	

Addendum	2/11/18	

	

Initial	results	of	the	above	two	benchmarks	on	Cori	were	not	what	we	expected.		As	

we	received	a	stop	work	order	on	ECP	shortly	thereafter,	we	were	unable	to	

investigate	further.			

	

The	obvious	possibilities	are	that	the	first	benchmark	does	not	adequately	replicate	

the	behavior	of	HDF5,	that	our	diagnosis	is	wrong,	or	that	it	only	applies	to	some	

machines.		

	

	

Solutions	
	

Given	the	diagnosis	outlined	above,	two	solutions	present	themselves	–	a	stopgap	

solution,	and	a	general	solution	of	the	issue.	

	

The	stopgap	is	to	query	the	file	system	on	file	flush	or	close,	and	skip	the	call	to	

MPI_File_set_size()	if	the	file	system’s	EOF	and	the	HDF5	library’s	EOA	agree.		This	

fix	is	easy,	so	we	implemented	a	prototype	for	testing.		While	there	is	some	

overhead	in	querying	the	file	system	and	broadcasting	the	results	to	all	ranks,	initial	

benchmarks	are	encouraging,	Table	4.		However,	since	we	don’t	currently	have	

access	to	a	Lustre	file	system	that	shows	the	problem	well,	we	are	holding	off	on	

merging	this	solution	into	the	HDF5	library	proper	until	we	can	validate	it	on	other	

Lustre	systems.	

	

	 FILE	CREATE:	
H5Fclose	

FILE	OPEN	RW:	
H5Fclose	

No	Fix:	 0.7	Sec	 22.12	Sec	

Skip	Truncate	
unconditionally	

0.43	Sec	 15.5	Sec	

Skip	Truncate	when	
possible	

0.5	Sec	 14.0	Sec	

Table	4	Initial	results	of	benchmark	of	stopgap	fix	on	Cori	with	2048	processes.		(Scot	–	some	of	these	
numbers	look	odd	–	we	should	discuss).	We	should	redo	these	runs	–Scot—	

	

Addendum:	2/19/18:		We	have	made	this	patch	available	for	testing.		So	far,	we	

have	one	positive	result	–	details	to	follow.	

	

The	general	solution	is	to	re-work	HDF5	metadata	layout	and	I/O	to	avoid	the	lock	

contention	discussed	above.			

	

In	HDF5	1.10.1,	we	release	paged	metadata	and	small	raw	data	allocation	in	serial	

and	parallel,	and	page	buffering	in	the	serial	case	only.		Thus,	we	already	have	the	

ability	to	aggregate	metadata	in	pages	of	user-configurable	size.		Page	buffering	was	

not	enabled	in	parallel	as	cache	coherency	issues	make	it	difficult	to	support	this	

feature	for	raw	data.		This	is	not	an	issue	for	metadata,	as	metadata	is	already	

consistent	across	all	ranks,	and	thus	no	fundamental	issues	prevent	us	from	using	it	

for	metadata	in	the	parallel	case.		However,	the	thinking	at	the	time	was	that	

collective	metadata	I/O	made	the	point	moot.	

	

While	there	are	no	fundamental	or	novel	problems	with	enabling	page	buffering	for	

metadata	in	parallel,	this	is	not	to	say	that	the	problem	is	trivial.		Implementation	

will	require	significant	reworking	of	the	page	buffer	to	integrate	it	into	HDF5	

parallel	metadata	I/O	management,	to	maintain	coherency	across	processes,	and	

possibly	to	support	collective	metadata	page	reads.		Further,	since	this	solution	to	

the	avoid	truncate	bug	will	likely	increase	HDF5	library	memory	footprint;	we	must	

preserve	our	current	metadata	I/O	management	scheme	as	an	option	where	severe	

constraints	on	memory	footprint	make	the	page	buffer	approach	impractical.		While	

design	work	will	be	required	to	come	up	with	firm	estimates,	my	impression	at	

present	is	that	it	will	be	about	three	months	of	work.			

	

In	considering	the	above	general	solution	to	the	avoid	truncate	bug,	it	should	be	

noted	that	it	points	the	way	to	solving	the	small	metadata	I/O	problem	in	HDF5	

completely.			

	

Specifically,	if	we	modify	the	file	format	to	allow	us	to	maintain	a	list	of	all	pages	of	

metadata	in	a	superblock	extension	message,	and	if	the	metadata	is	small	enough	

that	it	is	practical	to	keep	it	all	in	the	page	buffer,	on	file	open,	process	0	could	load	

all	metadata	pages	and	broadcast	them	to	all	other	processes,	thus	avoiding	all	

reads	of	individual	pieces	of	metadata.			

	

Similarly,	all	dirty	metadata	could	be	written	to	file	in	a	single	collective	write	of	

dirty	metadata	pages	on	close	or	flush,	thus	avoiding	all	small	metadata	writes	as	

well.	

	

Further,	since	all	metadata	cache	misses	would	be	satisfied	from	the	page	buffer	in	

this	scenario,	we	could	restrict	metadata	cache	size	more	aggressively	without	

incurring	unacceptable	performance	penalties.		As	metadata	in	the	page	buffer	is	in	

on	disk	format	which	requires	anywhere	from	a	third	to	a	tenth	of	the	RAM	required	

for	the	same	piece	of	metadata	in	the	metadata	cache	where	it	is	unpacked	for	

immediate	use,	the	memory	needed	for	the	page	buffer	could	be	at	least	partially	

offset	by	reduced	metadata	cache	size.		

	

In	the	common	scenario	in	which	the	metadata	in	the	HDF5	file	fits	into	at	most	a	

few	1	MiB	pages,	metadata	I/O	is	restricted	to	file	open,	close,	and	flush,	and	is	

aggregated	into	pages	sized	to	match	the	underlying	file	system	page	size.		This	

should	yield	a	large	win,	as	metadata	I/O	will	be	indistinguishable	from	raw	data	

I/O,	and	we	will	be	able	to	avoid	the	overhead	of	the	current	sync	point	scheme	for	

flushing	dirty	metadata	during	the	course	of	the	computation.	

	

In	cases	where	the	metadata	is	too	large	to	be	retained	in	the	page	buffer	for	the	

duration	of	the	computation,	we	will	have	to	retain	the	sync	point	scheme	to	allow	

dirty	pages	of	metadata	to	be	flushed	without	the	risk	of	message	from	the	

past/future	bugs.		However,	these	writes	will	be	collective	writes	of	pages	sized	to	

the	underlying	file	system,	and	thus	should	avoid	lock	contention	issues	and	the	

resulting	delays.		While	we	will	not	be	able	to	avoid	independent	metadata	page	

reads	completely,	we	should	be	able	to	use	collective	page	reads	in	many	cases.	

	

