
January 19, 2018 RFC THG 2016-01-05.v4

Page 1 of 21

RFC: Setting Bounds for Object Creation in HDF5 1.10.0

The HDF Group

The public routine H5Pset_libver_bounds() sets the low and high bounds on library
release versions to be used when creating objects. The current implementation
supports only two combinations of low/high bounds for this routine.

This RFC proposes additions to the enumerated define for low/high bounds so as to
allow user flexibility in setting bounds for object creation.

1 Introduction

The public routine H5Pset_libver_bounds(hid_t fapl_id, H5F_libver_t low, H5F_libver_t high) sets the
low and high bounds for the libver_bounds property in the file access property list fapl_id. The bounds
are library release versions, which indirectly determines the format versions that the library will use
when creating objects in the file.

Currently, the library defines two values for H5F_libver_t and supports two pairs of combinations via
H5Pset_libver_bounds().

This RFC proposes additions to the enumerated define for H5F_libver_t, which results in six possible
pairs of (low, high) combinations. This document describes the changes in the library to provide such
versioning support.

2 Terms used

The following terms are abbreviated as listed below for convenience and they are used
interchangeably in the document:

a) H5F_LIBVER_EARLIEST earliest

b) H5F_LIBVER_V18 v18

c) H5F_LIBVER_V110 v110

d) H5F_LIBVER_LATEST latest

e) File access property list fapl

f) File creation property list fcpl

3 Current implementation

The public routine H5Pset_libver_bounds sets the bounds for the libver_bounds property in a file
access property list, indicating the object creation behavior set for an existing file, and can vary
according to application needs each time a file is opened. The setting to this routine will not affect
the reading and writing of existing objects, but only the creation of new objects in the file.

January 19, 2018 RFC THG 2016-01-05.v4

Page 2 of 21

The two parameters to the routine, low and high, control the range of library release versions that
the library will use to create objects in the file. The parameter low sets the earliest format versions
that the HDF5 library will use when creating objects in the file. Note that earliest possible is different
from earliest, as some features introduced in library versions later than 1.0.0 resulted in updates to
object formats. The parameter high sets the latest format versions that the library will be allowed to
use when creating objects in the file.

The enumerated values for H5F_libver_t are:

typedef enum H5F_libver_t {
 H5F_LIBVER_EARLIEST,
 H5F_LIBVER_LATEST
} H5F_libver_t;

The value H5F_LIBVER_EARLIEST indicates the earliest possible format versions while
H5F_LIBVER_LATEST indicates the latest format versions available.

The library supports only two pairs of (low, high) combinations as derived from the above values:

1. low = H5F_LIBVER_EARLIEST, high = H5F_LIBVER_LATEST

• The library will create objects with the earliest possible format versions.

• The library will allow objects to be created with the latest format versions available and
there is no upper limit on the format versions to use. For example, if a newer format
version is required to support a feature, this setting will allow the object to be created.

• This is the library default setting and provides the greatest format compatibility.

2. low = H5F_LIBVER_LATEST, high = H5F_LIBVER_LATEST

• The library will create objects using the latest format versions available.

• This setting will allow users to take advantage of the latest features and performance
enhancements in the library. However, earlier versions of the library may not be able to
access objects created with this setting.

4 Use cases

As can be seen, the current implementation for H5Pset_libver_bounds is rather restricted. The
following use cases will benefit from the proposed additions to H5Pset_libver_bounds as described in
the next section:

• A user wants to use HDF5 1.10.x library to create a file that is compatible with 1.8.x library
release.

• A user wants to use HDF5 1.10.x library to create a file that uses the latest features available
to 1.8.x library release like compact-or-indexed link storage.

• A user wants to use HDF5 1.10.x library to create a file that uses at least the latest features
available to 1.8.x library release. At the same time, the user also wants to use the latest

January 19, 2018 RFC THG 2016-01-05.v4

Page 3 of 21

features available to 1.10.x library release like dataset with the latest chunk indexing, no-
filter-partial-bound-chunks, or virtual dataset.

• A user wants to use the very latest features in HDF5 1.10.x library release.

5 Public Routines and Data Structures

5.1 H5F_libver_t enumerated values:

typedef enum H5F_libver_t {
 H5F_LIBVER_EARLIEST = 0,
 H5F_LIBVER_V18 = 1,

H5F_LIBVER_V110 = 2,
H5F_LIBVER_NBOUNDS

} H5F_libver_t;

 #define H5F_LIBVER_LATEST H5F_LIBVER_V110

The two new values added to H5F_libver_t are H5F_LIBVER_V18 and H5F_LIBVER_V110. They
indicate that the library will create objects with the format versions available in library releases 1.8.x
and 1.10.x respectively. We also define H5F_LIBVER_LATEST as a macro, which is aliased to the
highest enumerated value in H5F_libver_t, indicating that this is currently the latest format available.

There will be six pairs of (low, high) combinations as derived from the above values in H5F_libver_t
but the library will only support #1 to #5:

1. low = H5F_LIBVER_EARLIEST, high = H5F_LIBVER_V18

• The library will create objects with the earliest possible format versions.

• The library will allow objects to be created with the latest format versions available to
library release 1.8.x.

• API calls that create objects or features that are available to versions of the library greater
than 1.8.x release will fail.

2. low = H5F_LIBVER_EARLIEST, high = H5F_LIBVER_V110

• The library will create objects with the earliest possible format versions.

• The library will allow objects to be created with the latest format versions available to
library release 1.10.x. Since 1.10.x is also H5F_LIBVER_LATEST, there is no upper limit on
the format versions to use. For example, if a newer format version is required to support
a feature e.g. virtual dataset, this setting will allow the object to be created.

• This is the library default setting and provides the greatest format compatibility.

3. low = H5F_LIBVER_V18, high = H5F_LIBVER_V18

• The library will create objects with the latest format versions available to library release
1.8.x.

• API calls that create objects or features that are available to versions of the library greater
than 1.8.x release will fail.

January 19, 2018 RFC THG 2016-01-05.v4

Page 4 of 21

• Earlier versions of the library may not be able to access objects created with this setting.

4. low = H5F_LIBVER_V18, high = H5F_LIBVER_V110

• The library will create objects with the latest format versions available to library release
1.8.x.

• The library will allow objects to be created with the latest format versions available to
library release 1.10.x. Since 1.10.x is also H5F_LIBVER_LATEST, there is no upper limit on
the format versions to use. For example, if a newer format version is required to support
a feature e.g. virtual dataset, this setting will allow the object to be created.

• Earlier versions of the library may not be able to access objects created with this setting.

5. low = H5F_LIBVER_V110, high = H5F_LIBVER_V110

• The library will create objects with the latest format versions available to library release
1.10.x.

• The library will allow objects to be created with the latest format versions available to
library release 1.10.x. Since 1.10.x is also H5F_LIBVER_LATEST, there is no upper limit on
the format versions to use. For example, if a newer format version is required to support
a feature e.g. virtual dataset, this setting will allow the object to be created.

• This setting allows users to take advantage of the latest features and performance
enhancements in the library. However, objects written with this setting may be accessible

to a smaller range of library versions than would be the case if low is set to

H5F_LIBVER_EARLIEST.

• Earlier versions of the library may not be able to access objects created with this setting.

6. low = H5F_LIBVER_EARLIEST, high = H5F_LIBVER_EARLIEST

• The library does not support this setting, as it requires the library to use the earliest
format versions, some of which may be buggy.

5.2 H5Pset/get_libver_bounds

We will modify the public routines H5Pset_libver_bounds/H5Pget_libver_bounds to accept the new
values for H5F_libver_t. The routine will also reject invalid combinations as below:

• low = H5F_LIBVER_EARLIEST, high = H5F_LIBVER_EARLIEST

• low = H5F_LIBVER_V110, high = H5F_LIBVER_EARLIEST

• low = H5F_LIBVER_V110, high = H5F_LIBVER_V18

• low = H5F_LIBVER_V18, high = H5F_LIBVER_EARLIEST

5.3 H5Fset_libver_bounds

There is an existing public routine called H5Fset_latest_format(hid_t file_id, hbool_t latest), which
enables switching between latest or non-latest format while a file is opened. Currently, this routine is
used in test/genall.c.

January 19, 2018 RFC THG 2016-01-05.v4

Page 5 of 21

As new enumerated values are added to H5F_libver_t, H5Fset_latest_format() is no longer sufficient.
Therefore, we will deprecate this routine and introduce the following routine to set the low and high
bounds while a file is opened:

 H5Fset_libver_bounds(hid_t file_id, H5F_libver_t low, H5F_libver_t high)

The parameters are:

• file_id: the file identifier

• low: the low bound as in H5Pset_libver_bound()

• high: the high bound as in H5Pset_libver_bound()

5.4 File struct

We will add two new fields to H5F_file_t:

struct H5F_file_t {
 :
 :

H5F_libver_t low_bound;
H5F_libver_t high_bound;
:

 :
};

These two fields record the low and high bound values for the libver_bounds property set in the fapl,
which is used to create or open a file. They replace the existing field latest_flags, which will be
removed.

5.5 Array of versions

Arrays of versions will be set up for the format versions listed in table I (see next section). Each array
will be indexed by the values defined for H5F_libver_t: H5F_LIBVER_EARLIEST, H5F_LIBVER_V18,
H5F_LIBVER_V110.

/* Superblock */
#define HDF5_SUPERBLOCK_VERSION_DEF 0
#define HDF5_SUPERBLOCK_VERSION_LATEST HDF5_SUPERBLOCK_VERSION_3
unsigned HDF5_superblock_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { HDF5_SUPERBLOCK_VERSION_DEF,

HDF5_SUPERBLOCK_VERSION_2,
 HDF5_SUPERBLOCK_VERSION_LATEST };

/* Object header */
#define H5O_VERSION_LATEST H5O_VERSION_2
unsigned H5O_obj_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_VERSION_1,

H5O_VERSION_2,

January 19, 2018 RFC THG 2016-01-05.v4

Page 6 of 21

H5O_VERSION_LATEST };

/* Attribute message */
#define H5O_ATTR_VERSION_LATEST H5O_ATTR_VERSION_3
unsigned H5O_attr_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_ATTR_VERSION_1,

H5O_ATTR_VERSION_3,
H5O_ATTR_VERSION_LATEST };

/* Dataspace message */
#define H5O_SDSPACE_VERSION_LATEST H5O_SDSPACE_VERSION_2
unsigned H5O_sdspace_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_SDSPACE_VERSION_1,

H5O_SDSPACE_VERSION_2,
H5O_SDSPACE_VERSION_LATEST };

/* Datatype message */
#define H5O_DTYPE_VERSION_LATEST H5O_DTYPE_VERSION_3
unsigned H5O_dtype_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_DTYPE_VERSION_1,

H5O_DTYPE_VERSION_3,
H5O_DTYPE_VERSION_LATEST };

/* Layout message */
#define H5O_LAYOUT_VERSION_LATEST H5O_LAYOUT_VERSION_4
unsigned H5O_layout_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_LAYOUT_VERSION_1,

H5O_LAYOUT_VERSION_3,
H5O_LAYOUT_VERSION_LATEST };

/* Fill value message */
#define H5O_FILL_VERSION_LATEST H5O_FILL_VERSION_3
unsigned H5O_fill_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_FILL_VERSION_1,

H5O_FILL_VERSION_3,
H5O_FILL_VERSION_LATEST };

/* Filter pipeline message */
#define H5O_PLINE_VERSION_LATEST H5O_PLINE_VERSION_2
unsigned H5O_pline_ver_bounds[H5F_LIBVER_NBOUNDS] =
 { H5O_PLINE_VERSION_1,

H5O_PLINE_VERSION_2,
H5O_PLINE_VERSION_LATEST };

January 19, 2018 RFC THG 2016-01-05.v4

Page 7 of 21

The library will use the low_bound field in H5F_file_t to index into the corresponding array to
determine the earliest format version that can be used. It will also perform bounds check by indexing
the high_bound field into the corresponding array to make sure the version set does not exceed the
version allowed. For example, when creating a dataset, the bounds check for layout version will be:

If(layout version > H5O_layout_ver_bounds[high_bound])
 error

If the user creates a virtual dataset, the library will generate a version 4 layout message. If
high_bound is v18, the above check will trigger failure for the dataset creation.

6 Format versions

The following two tables list the format versions that the library will use when creating objects in the
file. The first table lists those formats that have multiple versions for supporting certain features and
the public routines that will trigger such features. The second table lists those formats that have just
the basic versions.

The two tables also include the library release that a feature is introduced. This information will help
in setting the low and high parameters for H5Pset_libver_bounds() when an application uses a
feature.

Table I

Format version Feature Introduced
in library
release

Trigger

HDF5_SUPERBLOCK_VERSION (Superblock) 0 Basic 1_6

1 Non-default v1-btree K value 1_6 H5Pset_istore_k

2 a) SOHM

b) Non-default free-space info

1_8

1_10

H5Pset_shared_mesg_index

H5Pset_file_space

H5Pset_libver_bounds:

 (v18, v18), (v18, v10)

3 Enable SWMR write*

1_10 H5Fcreate: H5F_ACC_SWMR_WRITE

H5Pset_libver_bounds: (v110, v110)

H5O_VERSION (Object header) 1 Basic 1_0

2 a) Creation order for attributes

b) Shared attributes

1_8

1_8

H5Pset_attr_creation_order

H5Pset_shared_mesg_index:

 H5O_SHMESG_ATTR_FLAG

H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

H5O_ATTR_VERSION (Attribute message) 1 Basic 1_0

2 a) Shared datatype

b) Shared dataspace

1_6

1_8

H5Tcommit2

H5Pset_shared_mesg_index:

January 19, 2018 RFC THG 2016-01-05.v4

Page 8 of 21

 H5O_SHMESG_SDSPACE_FLAG

 H5O_SHMESG_DTYPE_FLAG

3 Character encoding 1_8 H5Pset_char_encoding

H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

H5O_SDSPACE_VERSION (Dataspace message) 1 Basic 1_0

2 Support for NULL dataspace & more
efficient packing in message

1_8 H5Screate: H5S_NULL

H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

H5O_DTYPE_VERSION (Datatype message) 1 Basic: (all except array types) 1_0

2 Array datatypes 1_4 H5Tarray_create2

3 More efficient encoding and packing
in message for compound, enum,
array types; also vlen type with
above types as base type

1_8 H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

H5O_LAYOUT_VERSION (Layout message) 1 Basic 1_0

2 Delayed space allocation 1_4

3 Default (more efficient encoding
and fix bug in previous versions)

1_8

4# a) Virtual Dataset

b) Do not filter partial bound chunks

1_10 H5Pset_virtual

H5Pset_chunk_opts

H5Pset_libver_bounds: (v110, v110)

H5O_FILL_VERSION (Fill value message) 1 Basic 1_6

2 Default (more condensed packing in
message)

1_8

3 More efficient packing in message 1_8 H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

H5O_PLINE_VERSION (Filter pipeline message) 1 Basic 1_0

2 More efficient packing in message 1_8 H5Pset_libver_bounds:

 (v18, v18), (v18, v110) (v110, v110)

* This will enable all latest version support as H5Pset_libver_bounds: (v10, v10)

This will enable latest chunk indexing

Table II

Format version Feature Introduced in library release

HDF_FREESPACE_VERSION (File’s free-space information) 0 Basic 1_0

HDF5_OBJECTDIR_VERSION (Root group symbol table entry) 0 Basic 1_0

HDF5_DRIVERINFO_VERSION (Driver information block) 0 Basic 1_4

HDF5_SHAREDHEADER_VERSION (Shared header message format) 0 Basic 1_0

January 19, 2018 RFC THG 2016-01-05.v4

Page 9 of 21

H5HG_VERSION (Global heap) 1 Basic 1_0

H5HL_VERSION (Local heap) 0 Basic 1_6

H5B2_HDR_VERSION (Version 2 B-tree header) 0 Basic 1_8

H5B2_INT_VERSION (Version 2 B-tree internal node) 0 Basic 1_8

H5B2_LEAF_VERSION (Version 2 B-tree leaf node) 0 Basic 1_8

H5FS_HDR_VERSION (Free-space manager header) 0 Basic 1_8

H5FS_SINFO_VERSION (Free-space manager section info) 0 Basic 1_8

H5HF_HDR_VERSION (Fractal heap header) 0 Basic 1_8

H5HF_DBLOCK_VERSION (Fractal heap direct block) 0 Basic 1_8

H5HF_IBLOCK_VERSION (Fractal heap indirect block) 0 Basic 1_8

H5SM_LIST_VERSION (Shared object header message list) 0 Basic 1_8

H5EA_HDR_VERSION (Extensible array header) 0 Basic 1_10

H5EA_IBLOCK_VERSION (Extensible array index block) 0 Basic 1_10

H5EA_SBLOCK_VERSION (Extensible array secondary block) 0 Basic 1_10

H5EA_DBLOCK_VERSION (Extensible array data block) 0 Basic 1_10

H5FA_HDR_VERSION (Fixed array header) 0 Basic 1_10

H5FA_DBLOCK_VERSION (Fixed array data block) 0 Basic 1_10

H5O_FSINFO_VERSION (File space info message) 0 Basic 1_10

H5O_MDCI_VERSION (Metadata cache image message) 0 Basic 1_10

H5O_EFL_VERSION (External file list message) 1 Basic 1_0

H5O_MTIME_VERSION (Object modification time message) 1 Basic 1_6

H5O_LINK_VERSION (Link message) 1 Basic 1_8

H5O_AINFO_VERSION (Attribute info message) 0 Basic 1_8

H5O_BTREEK_VERSION (B-tree ‘K’ bbvalues message) 0 Basic 1_8

H5O_DRVINFO_VERSION (Driver Info message) 0 Basic 1_8

H5O_GINFO_VERSION (Group info message) 0 Basic 1_8

H5O_LINFO_VERSION (Link info message) 0 Basic 1_8

H5O_REFCOUNT_VERSION (Object reference count message) 0 Basic 1_8

H5L_EXT_VERSION (External link) 0 Basic 1_8

7 Cycle of Operation

7.1 Setting file access property list

A user can call the public routine H5Pset_libver_bounds() to specify the bounds for library releases
when creating objects in a file. When not specified, the default setting for low/high bounds is
(earliest, latest).

When a file is created or opened, the library will set the low_bound and high_bound fields in
H5F_file_t to the low and high parameters set via H5Pset_libver_bounds() in the fapl.

January 19, 2018 RFC THG 2016-01-05.v4

Page 10 of 21

7.2 Creating a file

For file creation, the features enabled in fcpl, the bounds setting in fapl, and the file access
permission will determine the following:

• The superblock version #

• Fail or succeed in creating the file

Depending on the file’s access permission, the library will initially set the superblock version as
follows:

• When creating a file with write access, the superblock version is set according to the features
enabled in fcpl:

o Version 0: default

o Version 1: non-default v1-btree K value

o Version 2: shared message index, non-default file space info

• When creating a file with SWMR-write access, the superblock version is set to 3 and the
low_bound field in H5F_file_t is set to at least v110.

Upgrading the low_bound will give the best format versions available in library release 1.10.x
for SWMR. Version 3 superblock is introduced in 1.10 for SWMR due to the problem of the
status_flags field in the superblock. See jira issue SWMR-79 and also the RFC: File Format
Changes in HDF5 1.10.0.

It then increments the superblock version as required by the low_bound.

Lastly, the library will verify that the superblock version does not exceed the version allowed by the
high_bound. File creation will fail if this condition does not hold.

The following two tables depict the actions described above when creating a file for the five pairs of
low/high bounds setting in the fapl.

7.2.1 Creating a file with write access

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

Superblock version 0, 1 or 2 0, 1, or 2 2 2 3

low_bound No change

File creation Succeed

7.2.2 Creating a file with SWMR-write access

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

Superblock version -- 3 -- 3 3

low_ bound -- v110 -- v110 No change

File creation Fail Succeed Fail Succeed Succeed

“” indicates “upgrade to”

January 19, 2018 RFC THG 2016-01-05.v4

Page 11 of 21

7.3 Opening a file

On file open, the file’s superblock version, the bounds setting in fapl, and the file access permission
determine:

• Whether the low_bound field in H5F_file_t is upgraded,

• Whether the file open succeeds

Depending on the file’s access permission, the library will upgrade low_bound based on the file’s
superblock version:

• When opening a file with write access:

o Version 0 or 1 superblock: no change to low_bound

o Version 2 superblock: upgrade low_bound to at least v18

o Version 3 superblock: upgrade low_bound to at least v110

• When opening a file with SWMR-write access:

o Version 0 or 1 superblock: fail the file open

o Version 3 superblock: upgrade low_bound to at least v110

The library will then verify that the superblock version does not exceed the version allowed by the
high_bound. File open will fail if this condition does not hold

The following five tables depict the actions described above when opening a file for the five pairs of
low/high bounds setting in the fapl.

7.3.1 Opening a file with write access

Superblock version 0, 1

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

low_bound No change

File open Succeed

Superblock version 2

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

low_ bound v18 v18 No change No change No change

File open Succeed

“” indicates “upgrade to”

Superblock version 3

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

low_ bound -- v110 -- v110 No change

File open Fail Succeed Fail Succeed Succeed

January 19, 2018 RFC THG 2016-01-05.v4

Page 12 of 21

7.3.2 Opening a file with SWMR-WRITE access:

Superblock version 0, 1, 2

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

low_bound --

File open Fail

Superblock version 3

Bounds setting (earliest, v18) (earliest, v110) (v18, v18) (v18, v110) (v110, v110)

low_ bound -- v110 -- v110 No change

File open Fail Succeed Fail Succeed Succeed

“” indicates “upgrade to”

7.4 Setting message versions

7.4.1 Object header

When creating an object header for an object, the library will first select amongst the available
versions:

• Version 1: default

• Version: 2: attribute creation order is tracked, shared attribute in file

via a call to H5O_set_version(). This is done without reference to the version bounds setting.

It then increments the selected object header version as required by the low_bound.

Finally, it tests to see if the selected object header version is permitted by the high_bound, and forces
the object header creation to fail if it not.

7.4.2 Attribute

When creating an attribute attached to an object, the library will first select amongst the available
attribute versions:

• Version 1: default

• Version 2: shared datatype or dataspace

• Version 3: character encoding

via a call to H5A_set_version(). This is done without reference to the version bounds setting.

It then increments the selected attribute version as required by the low_bound.

Finally, it tests to see if the selected attribute version is permitted by the high_bound, and forces the
attribute creation to fail if it not.

January 19, 2018 RFC THG 2016-01-05.v4

Page 13 of 21

7.4.3 Dataspace

When creating a dataspace, the library will initially set the dataspace message version as shown
below without regard to the version bounds setting:

• Version 1: default

• Version 2: a null dataspace

When the dataspace is subsequently associated with an attribute or dataset, the library will call
H5S_set_version() to:

• Increment the selected dataspace version as required by the low_bound

• Verify that the selected dataspace version is permitted by the high_bound

If the latter check fails, the attribute or dataset creation will fail.

7.4.4 Datatype

When creating a datatype, the library will initially set the datatype message version as shown below
without regard to the version bounds setting:

• Version 1: default (version 3 is selected only as a result of the low_bound)

• Version 2: array type

When the datatype is subsequently associated with an attribute, a dataset, or a committed datatype ,
the library will call H5T_set_version() to:

• Increment the selected datatype version as required by the low_bound

• Verify that the selected datatype version is permitted by the high_bound

If the latter check fails, the attribute/dataset/committed datatype creation will fail.

7.4.5 Layout

When setting the layout property in a dataset creation property list, the library will initially set the
layout message version as shown below without regard to the version bounds setting:

• Version 3: default (versions 1 and 2 appear to have been deprecated since HDF5 1.6)

• Version 4: virtual layout, do not filter partial bound chunks

When the layout message is subsequently associated with a dataset, the library will call
H5D__layout_set_version() to:

• Increment the selected layout property version as required by the low_bound

• Verify that the selected layout property version is permitted by the high_bound

If the latter check fails, the dataset creation will fail.

7.4.6 Fill value

When setting the fill value property in a dataset creation property list, the library will initially set the
fill value message version as shown below without regard to the version bounds setting:

January 19, 2018 RFC THG 2016-01-05.v4

Page 14 of 21

• Version 2: default (version 1 appears to have been deprecated since HDF5 1.6, version 3 is
selected only as a result of the low_bound)

When the fill value message is subsequently associated with a dataset, the library will call
H5D__fill_set_version() to:

• Increment the selected fill value message version as required by the low_bound

• Verify that the selected fill value message version is permitted by the high_bound

If the latter check fails, the dataset creation will fail.

7.4.7 Filter pipeline

When setting the filter property in a dataset creation property list, the library will initially set the
filter pipeline message version as shown below without regard to the version bounds setting:

• Version 1: default (version 2 is selected only as a result of the low_bound)

When the filter pipeline message is subsequently associated with a dataset, the library will call
H5O__pline_set_version() to:

• Increment the selected filter pipeline message version as required by the low_bound

• Verify that the selected filter pipeline message version is permitted by the high_bound

If the latter check fails, the dataset creation will fail.

The filter property can also be set in a group creation property list. The library will perform similar
actions as described above except that the filter pipeline message will be associated with a fractal
heap for dense storage.

7.5 Bounds check

7.5.1 Cache image

As this feature is introduced in library release 1.10.x and the creation of a cache image is done only
on file close, we will perform the bounds check in the internal library routine
H5C__prep_image_for_file_close(). This routine is called by the metadata cache on file close to do
preparatory work prior to the generation of a cache image. We will verify the following:

• If the high_bound is less than v110, silently cancel the request for a cache image.

The silent failure follows the same rationale as the check for superblock version in this routine before
the generation of a cache image – specifically that the cache image is an optimization, and thus it is
not appropriate to trigger an error when this optimization cannot be applied. Please see the RFC:
Metadata Cache Image for details.

7.5.2 H5Ocopy

H5Ocopy is a public routine that copies an object in an HDF5 file to a destination location in the same
file or a different file. The library does the following bounds check when copying an object:

• The source object header to be copied does not exceed the version allowed by the destination
file’s high_bound. Otherwise H5Ocopy will fail.

January 19, 2018 RFC THG 2016-01-05.v4

Page 15 of 21

• For each message in the source object header to be copied, check to ensure that the version
of the source message to be copied does not exceed the version allowed by the destination
file’s high_bound. Otherwise H5Ocopy will fail. The bounds check is done in each message’s
pre_copy callback.

7.5.3 H5Sencode and H5Pencode

The new public routine H5Sencode2() will be introduced in library release 1.12.x. The new parameter
fapl to this routine controls the encoding used via the bounds setting in H5Pset_libver_bounds(). In
the RFC: H5Sencode/H5Sdecode Format Change, the encodings are described only for the (earliest,
latest) and (latest, latest) settings. As new combinations of low/high bounds are added in this RFC,
the RFC for H5Sencode and the internal library coding need to be modified accordingly. Also, tests
need to be added.

8 Tools

The tool h5repack is modified to add two new parameters, -j and -k, so users can specify the low and
high bounds when repacking a file.

9 Testing

NOTE: Binh-Minh, please modify this section accordingly for tests that you add/modify.

9.1 Regression tests

There are tests in test/tfile.c to verify the format versions listed in table I are as specified. Each test is
tested with the five combinations of low/high bounds via H5Pset_libver_bounds().

• test_libver_bounds_super()
o Validate superblock versions

• test_libver_bounds_obj()
o Validate object header versions

• test_libver_bounds_dataset()
o Validate format versions for layout, filter pipeline, and fill value messages

• test_libver_bounds_dataspace()
o Validate dataspace message versions

• test_libver_bounds_datatype()
o Validate datatype message versions

• test_libver_bounds_attributes()
o Validate attribute message versions

9.2 Compatibility tests

The program gen_bounds.c will generate the following HDF5 files:

1) bounds_earliest_latest.h5
a. Version 0 superblock
b. Contains a chunked dataset with layout version 3
c. Contains a chunked dataset with layout version 4

January 19, 2018 RFC THG 2016-01-05.v4

Page 16 of 21

2) bounds_earliest_v18.h5
a. Version 0 superblock
b. Contains a chunked dataset with layout version 3

3) bounds_latest_latest.h5
a. Version 3 superblock
b. Contains a chunked dataset with layout version 4

4) bounds_v18_latest.h5
a. Version 2 superblock
b. Contains a chunked dataset with layout version 3

5) bounds_v18_v18.h5
a. Version 2 superblock
b. Contains a chunked dataset with layout version 3
c. Contains a chunked dataset with layout version 4

9.2.1 Testing with 1.8 library:

1) bounds_earliest_latest.h5
a. Is able to open the chunked dataset with layout version 3
b. Is unable to open the chunked dataset with layout version 4—see error #a below

2) bounds_earliest_v18.h5
a. Is able to open the chunked dataset with layout version 3

3) bounds_latest_latest.h5
a. Is unable to open the file—see error #b below.

4) bounds_v18_latest.h5
a. Is able to open the chunked dataset with layout version 3

5) bounds_v18_v18.h5
a. Is able to open the chunked dataset with layout version 3
b. Is unable to open the chunked dataset with layout version 4—see error #a below

▪ Error #a:

HDF5-DIAG: Error detected in HDF5 (1.8.18-snap1) thread 0:
 #000: ../../hdf5/src/H5D.c line 369 in H5Dopen2(): can't open dataset
 major: Dataset
 minor: Unable to initialize object
 #001: ../../hdf5/src/H5Dint.c line 1248 in H5D_open(): not found
 major: Dataset
 minor: Object not found
 #002: ../../hdf5/src/H5Dint.c line 1374 in H5D__open_oid(): can't get layout/pline/efl info
 major: Dataset
 minor: Can't get value
 #003: ../../hdf5/src/H5Dlayout.c line 354 in H5D__layout_oh_read(): unable to read data layout message
 major: Dataset
 minor: Unable to initialize object
 #004: ../../hdf5/src/H5Omessage.c line 484 in H5O_msg_read(): unable to read object header message
 major: Object header
 minor: Read failed
 #005: ../../hdf5/src/H5Omessage.c line 545 in H5O_msg_read_oh(): unable to decode message
 major: Object header

January 19, 2018 RFC THG 2016-01-05.v4

Page 17 of 21

 minor: Unable to decode value
 #006: ../../hdf5/src/H5Olayout.c line 118 in H5O_layout_decode(): bad version number for layout message
 major: Object header
 minor: Unable to load metadata into cache

▪ Error #b:

HDF5-DIAG: Error detected in HDF5 (1.8.18-snap1) thread 0:
 #000: ../../hdf5/src/H5F.c line 604 in H5Fopen(): unable to open file
 major: File accessibilty
 minor: Unable to open file
 #001: ../../hdf5/src/H5Fint.c line 1087 in H5F_open(): unable to read superblock
 major: File accessibilty
 minor: Read failed
 #002: ../../hdf5/src/H5Fsuper.c line 294 in H5F_super_read(): unable to load superblock
 major: Object cache
 minor: Unable to protect metadata
 #003: ../../hdf5/src/H5AC.c line 1262 in H5AC_protect(): H5C_protect() failed.
 major: Object cache
 minor: Unable to protect metadata
 #004: ../../hdf5/src/H5C.c line 3574 in H5C_protect(): can't load entry
 major: Object cache
 minor: Unable to load metadata into cache
 #005: ../../hdf5/src/H5C.c line 7954 in H5C_load_entry(): unable to load entry
 major: Object cache
 minor: Unable to load metadata into cache
 #006: ../../hdf5/src/H5Fsuper_cache.c line 174 in H5F_sblock_load(): bad superblock version number
 major: File accessibilty
 minor: Bad value

9.2.2 Testing with 1.6 library:

1) bounds_earliest_latest.h5
a. Is able to open the chunked dataset with layout version 3
b. Is unable to open the chunked dataset with layout version 4—see error #c below

2) bounds_earliest_v18.h5
a. Is able to open the chunked dataset with layout version 3

3) bounds_latest_latest.h5
a. Is unable to open the file—see error #d below

4) bounds_v18_latest.h5
a. Is unable to open the file—see error #d below

5) bounds_v18_v18.h5
a. Is unable to open the file—see error #d below

▪ Error #c:

HDF5-DIAG: Error detected in HDF5 library version: 1.6.10-snap17 thread 0. Back trace follows.
 #000: ../../hdf5/src/H5D.c line 1174 in H5Dopen(): not a dataset
 major(15): Dataset interface
 minor(03): Inappropriate type
 #001: ../../hdf5/src/H5G.c line 2088 in H5G_get_type(): unable to determine object type

January 19, 2018 RFC THG 2016-01-05.v4

Page 18 of 21

 major(10): Symbol table layer
 minor(29): Unable to initialize object
 #002: ../../hdf5/src/H5D.c line 2343 in H5D_isa(): unable to read object header
 major(15): Dataset interface
 minor(29): Unable to initialize object
 #003: ../../hdf5/src/H5O.c line 953 in H5O_exists(): unable to verify object header message
 major(12): Object header layer
 minor(24): Read failed
 #004: ../../hdf5/src/H5O.c line 996 in H5O_exists_real(): unable to load object header
 major(12): Object header layer
 minor(40): Unable to load metadata into cache
 #005: ../../hdf5/src/H5AC.c line 764 in H5AC_protect(): H5C_protect() failed.
 major(08): Meta data cache layer
 minor(46): Unable to protect metadata
 #006: ../../hdf5/src/H5C.c line 2974 in H5C_protect(): can't load entry
 major(08): Meta data cache layer
 minor(40): Unable to load metadata into cache
 #007: ../../hdf5/src/H5C.c line 3914 in H5C_load_entry(): unable to load entry
 major(08): Meta data cache layer
 minor(40): Unable to load metadata into cache
 #008: ../../hdf5/src/H5Ocache.c line 243 in H5O_load(): bad object header version number
 major(12): Object header layer
 minor(56): Wrong version number

▪ Error #d:

HDF5-DIAG: Error detected in HDF5 library version: 1.6.10-snap17 thread 0. Back trace follows.
 #000: ../../hdf5/src/H5F.c line 2072 in H5Fopen(): unable to open file
 major(04): File interface
 minor(17): Unable to open file
 #001: ../../hdf5/src/H5F.c line 1852 in H5F_open(): unable to read superblock
 major(04): File interface
 minor(24): Read failed
 #002: ../../hdf5/src/H5Fsuper.c line 125 in H5F_read_superblock(): bad superblock version number
 major(04): File interface
 minor(05): Bad value

10 Future releases/maintenance

To handle future releases, for example, HDF5 release 1.12:

• Add H5F_LIBVER_V112 to H5F_libver_t struct defined in H5Fpublic.h.

• Change H5F_LIBVER_LATEST macro to H5F_LIBVER_V112 defined in H5Fpublic.h

• Add the version for v112 to the arrays of format versions:
o HDF5_superblock_ver_bounds[] defined in H5Fsuper.c
o H5O_obj_ver_bounds[] defined in H5Oint.c
o H5O_ layout_ver_bounds defined in H5Dlayout.c
o H5O_attr_ver_bounds[] defined in H5Aint.c
o H5O_dtype_ver_bounds[] defined in H5T.c
o H5O_fill_ver_bounds[] defined in H5Ofill.c
o H5O_pline_ver_bounds[] defined in H5Opline.c
o H5O_sdspace_ver_bounds[] defined in H5S.c

January 19, 2018 RFC THG 2016-01-05.v4

Page 19 of 21

• Modify the tests to accommodate H5F_LIBVER_V112

January 19, 2018 RFC THG 2016-01-05.v4

Page 20 of 21

Appendix: Table of format versions for library releases

 1_0 1_2 1_4 1_6 1_8 1_10

HDF5_BOOTBLOCK_VERSION 0 0 0 - - -

HDF5_SUPERBLOCK_VERSION 0, 1 0, 1, 2 0, 1, 2, 3

HDF5_FREESPACE_VERSION 0 0 0 0 0 0

HDF5_OBJECTDIR_VERSION 0 0 0 0 0 0

HDF5_DRIVERINFO_VERSION - - 0 0 0 0

HDF5_SHAREDHEADER_VERSION 0 0 0 0 0 0

H5HL_VERSION no vers no vers no vers 0 0 0

H5HG_VERSION 1 1 1 1 1 1

H5B2_HDR_VERSION

0 0

H5B2_INT_VERSION

0 0

H5B2_LEAF_VERSION

0 0

H5FS_HDR_VERSION

0 0

H5FS_SINFO_VERSION

0 0

H5HF_HDR_VERSION

0 0

H5HF_DBLOCK_VERSION

0 0

H5HF_IBLOCK_VERSION

0 0

H5SM_LIST_VERSION

0 0

H5EA_HDR_VERSION

0

H5EA_IBLOCK_VERSION

0

H5EA_SBLOCK_VERSION

0

H5EA_DBLOCK_VERSION

0

H5FA_HDR_VERSION

0

H5FA_DBLOCK_VERSION

0

H5O_VERSION 1 1 1 1 1, 2 1, 2

H5O_ATTR_VERSION 1 1 1 1, 2 1, 2, 3 1, 2, 3

H5O_DTYPE_VERSION 1 1 1, 2 1, 2 1, 2, 3 1, 2, 3

H5O_EFL_VERSION 1 1 1 1 1 1

H5O_FILL_VERSION no vers no vers no vers no vers, 1, 2 1, 2, 3 1, 2, 3

January 19, 2018 RFC THG 2016-01-05.v4

Page 21 of 21

H5O_LAYOUT_VERSION 1 1 1, 2 1, 2, 3 1, 2, 3 1, 2, 3, 4

H5O_MTIME_VERSION no vers no vers no vers no vers, 1 no vers, 1 no vers, 1

H5O_PLINE_VERSION 1 1 1 1 1, 2 1, 2

H5O_SDSPACE_VERSION 1 1 1 1 1, 2 1, 2

H5O_SHARED_VERSION 1 1 1 1, 2 1, 2, 3 1, 2, 3

H5O_AINFO_VERSION

0 0

H5O_BTREEK_VERSION

0 0

H5O_DRVINFO_VERSION

0 0

H5O_FSINFO_VERSION

 0

H5O_MDCI_VERSION

 0

H5O_GINFO_VERSION

0 0

H5O_LINK_VERSION

1 1

H5L_EXT_VERSION

0 0

H5O_LINFO_VERSION

0 0

H5O_REFCOUNT_VERSION

0 0

Revision History

January 5, 2016: Version 1 sent for internal review.

September 15, 2017 Version 2: revised to reflect current implementation.

January 11, 2018 Version 3: another revision to reflect implementation.

Januray 19, 2018 Version 4: revised after review by John Mainzer

References

The HDF Group, “HDF5 File Format Specification”
https://www.hdfgroup.org/HDF5/doc/H5.format.html

https://www.hdfgroup.org/HDF5/doc/H5.format.html

