
#SC17 Birds of a Feather

The HDF Dataverse

Part 1: HDF5 STATE OF THE UNION
State of the Union

Dave Pearah, CEO, The HDF Group

Elena Pourmal, Client Management Director and Interim

Engineering Director, The HDF Group

John Mainzer, Principal Architect, The HDF Group

ECP Exascale, Big Data Initiatives
Quincey Koziol, Principal Data Architect, National Energy

Research Scientific Computing Center (NERSC)

Part 2: USER LIGHTING TALKS
Andreas Dilger, Intel

Sean Ziegeler, Engility

Brian van Straalen, Lawrence Berkeley National Laboratory

Who is the HDF Group? 2

HDF Group has developed open

source solutions for Big Data

challenges for over 31 years

Small not-for-profit company (~ 40

employees) with focus on High

Performance Computing and

Scientific Data

Headquarters in Champaign, IL

Our flagship platform – HDF5 – is

the heart of our open source

ecosystem.

Thousands use + build on HDF5

every day (983 projects on Github)

“De-facto standard for scientific computing” and integrated into every major

scientific analytics + visualization tool

v

v

v

What does the HDF Group do? 3

• HDF5 Community Edition (Open Source)

• HDF5 Enterprise Apps: Spark Connector, ODBC Connector, S3

Connector, Compression Library, Binaries, etc.

• HDF Cloud (Beta)

• HDF Support Packages (Basic + Pro + Premier)

• Python support for h5py + PyTables + pandas

• Training

• HDF: new functionality + performance tuning

• General HPC software engineering with scientific expertise

• Metadata science and standards services

Products

Support

Consulting

4A few of our users

5

I/O library

optimized for

scale + speed

Self-

documenting

container

optimized for

scientific data +

metadata

Users who

need both

features

Why Use HDF5? 5

Why is this concept so different + useful? 6

• Native support for multidimensional data

• Data and metadata in one place =>

streamlines data lifecycle & pipelines

• Portable, no vendor lock-in

• Maintains logical view while adapting to storage

context

• In-memory, over-the-wire, on-disk, parallel FS,

object store

• Pluggable filter pipeline for compression,

checksum, encryption, etc.

• High-performance I/O

• Large ecosystem

E
tc

…

C
o

m
p

re
s
si

o
n

B
in

a
ri

e
s

S
p

a
rk

 C
o

n
n

e
c

t

S
3

 C
o

n
n

e
c

t

O
D

B
C

 C
o

n
n

e
c

t

7HDF Strategy

HDF5 Community Edition
[Open Source + Free + Registration Required]

HDF5 Enterprise Apps HDF Cloud

• Web service + Object Storage

• 1 HDF5 file multiple objects

• Data caching

• REST API (h5py)

• SDK compatibility

HDF5 “Database” Analytics (Python) Deep Learning

Existing

HDF5 Users

Exploration

Support

• Basic

• Pro

• Premier

8Vendor Partner Program (1 Year Update)

• Launched last year at SC16

• Key Partner Services

• Optimized and customized HDF solutions for target platforms and technologies: HDF5

binaries, HDF Cloud, Object Storage connectors, etc.

• Support platform vendors and their end users: premium support backed by HDF Group

• Field sales assistance: private-label team that can build custom and semi-custom apps to

support your own sales initiatives

• Co-marketing: showcase platform benchmarks (e.g. STAC M3 in Fintech)

HDF5 Roadmap 9

• The HDF Group is very grateful for your:

• Participation in releases and features testing

• Issues reporting, improvement suggestions

• Expertise sharing

• We accept contributions

• Send your patch (code, test code, documentation changes) to help@hdfgroup.org

• We are working on lowering the barrier for contributions

• Public JIRA

• Simplified contribution process

• Developers documentation

• Coding standards

10Community Involvement

mailto:help@hdfgroup.org

• Storage versatility using VFD and VOL mechanisms

• Scalability

• Target 1.5M + MPI ranks

• Use page buffering and metadata paged allocation

• Data Model Extensions – possible directions

• Sparse storage

• Key-Value

• Column-Oriented

11Future HDF5 Enhancements

• Goal
- Provide an application with the HDF5 data

model and API, but allow different underlying
storage mechanisms

• New layer below HDF5 API layer
- Intercepts all API calls that potentially could

touch the data on disk and route them to a
Virtual Object Driver

• Potential Object Drivers (or plugins):
- Native HDF5 driver (writes to HDF5 file)
- Raw driver (maps groups to file system

directories and datasets to files in directories)
- Drivers to Object Store (DAOS)
- Remote driver (the file exists on a remote

machine)
- Drivers to other file formats (netCDF, HDF4,

ADIOS, FITS, etc.)

- VOL properties
- Stackable
- Dynamically loaded

12HDF5 Virtual Object Layer (VOL)

• Goal

- Serve HDF5 files from Object Store

• Approach

• Use existing HDF5 library and new VFD

drivers to access the HDF5 file (work in

progress)

• S3 VFD uses range gets to read the desired

data from the HDF5 file

• R/O case
• Optimization is performed to avoid small

metadata accesses

• Ingestion tool is required to create object with

metadata information

• R/W case takes advantage of paged allocation

feature introduced in HDF5 1.10.1
• VFD tracks allocations for the pages containing

metadata and raw data for an object.

13HDF5 S3 VFD

• Goal
- Scale to 1.5+ million MPI ranks

• Problem on Lustre
• System contention when performing small I/O (HDF5 metadata and small raw data)

• HDF5 metadata (~ few KB) is scattered all over the file

• A single collective write just before close results in excessive lock contention

• The MPI_File_set_size() call that is made shortly after the above collective metadata write

typically cannot execute until it obtains locks on all OSTs. This requires the call to wait until

the above contention is resolved – hence the delays we have been seeing on our truncate

calls at file close.

• Proposed Solution
• Implement paged aggregation and page buffering for parallel HDF5

14HDF5 Scalability

ExaHDF5 Mission

• Work with ECP applications to meet their needs

• Productize HDF5 features

• Support, maintain, package, and release HDF5

• Research toward future architectures and

incoming requests from ECP teams

ExaHDF5 Team

PI Name Affiliation and Project Role

Suren Byna LBNL, Project Lead

Quincey Koziol LBNL, Software development lead

Scot Breitenfeld THG, SW Integration and release lead

Venkat Vishwanath ANL, Integration and collaboration lead

Preeti Malakar ANL, Data movement optimization

Staff: Houjun Tang, Bin Dong, Junmin Gu, Jialin Liu, Alex Sim, Paul Coffman,

Todd Munson, Jerome Soumagne, Dana Robinson, and John Mainzer

16

HDF5 in ECP Apps

• 19 out of the 26 (22 ECP + 4 NNSA)

apps currently use or planning to

use HDF5

17

Outline

• HDF5 features to be developed in ECP ExaHDF5

• Timeline

• EOD-HDF5 - Features specific for EOD

• Looking further ahead

18

ExaHDF5 – Features

• Virtual Object Layer (VOL)

– Abstraction layer within HDF5, similar to PMPI layer

– Allows interception of HDF5 calls at runtime, to access data in

alternate ways

• Caching and prefetching

– Data Elevator for moving data efficiently among storage layers

• Topology-aware I/O

– Select data movement optimizations based on topology

– Topology-aware I/O API and HDF5 VOL based on Open Fabrics

• Support Advanced Workflows

– Full Single Writer – Multiple Reader (SWMR)

– Design Parallel SWMR

19

ExaHDF5 – Features

• Virtual Object Layer (VOL)

– Abstraction layer within HDF5, similar to PMPI layer

– Allows interception of HDF5 calls at runtime, to access data in

alternate ways

• Caching and prefetching

– Data Elevator for moving data efficiently among storage layers

• Topology-aware I/O

– Select data movement optimizations based on topology

– Topology-aware I/O API and HDF5 VOL based on Open Fabrics

• Support Advanced Workflows

– Full Single Writer – Multiple Reader (SWMR)

– Design Parallel SWMR

20

Data Elevator

Memory

Parallel file system

Archival storage (HPSS

tape)

Shared burst buffer

Node-local storage

Campaign storage

• Contributions

- Low-contention data movement library for hierarchical

storage systems

- Offload data movement task to a few compute nodes or

cores

- DE intercepts HDF5 calls at run time using VOL

• Benefits of using Data Elevator

- Performance: Have demonstrated that Data Elevator is

4x faster than Cray DataWarp stage_out and 4x faster

than writing data to parallel file system, with several

science applications on NERSC’s Cori system

- Transparent data movement: Applications using HDF5

specify destination of data file and the Data Elevator

transparently moves data from a source to the destination

- Efficiency: Data Elevator reduces contention on BB

- In transit analysis: While data is in a faster storage layer,

analysis can be done in the data path

Available on Cori → module load data-elevator
21

ExaHDF5 – Features

• Virtual Object Layer (VOL)

– Abstraction layer within HDF5, similar to PMPI layer

– Allows interception of HDF5 calls at runtime, to access data in

alternate ways

• Caching and prefetching

– Data Elevator for moving data efficiently among storage layers

• Topology-aware I/O

– Select data movement optimizations based on topology

– Topology-aware I/O API and HDF5 VOL based on Open Fabrics

• Support Advanced Workflows

– Full Single Writer – Multiple Reader (SWMR)

– Design Parallel SWMR

23

Topology-aware I/O optimizations

• Data aggregation algorithm
based on the two-phase I/O
scheme
– Aggregators placement

considering topology and data
access pattern

• Optimizations:
– Double-buffering
– RMA operation - using non-

blocking MPI one-sided
communication

1K nodes (16 ranks per node)

2K nodes (16 ranks per node)F. Tessier, V. Vishwanath, E. Jeannot - TAPIOCA: An I/O Library for Optimized Topology-

Aware Data Aggregation on Large-Scale Supercomputers - IEEE Cluster 2017 24

ExaHDF5 – Features

• Virtual Object Layer (VOL)

– Abstraction layer within HDF5, similar to PMPI layer

– Allows interception of HDF5 calls at runtime, to access data in

alternate ways

• Caching and prefetching

– Data Elevator for moving data efficiently among storage layers

• Topology-aware I/O

– Select data movement optimizations based on topology

– Topology-aware I/O API and HDF5 VOL based on Open Fabrics

• Support Advanced Workflows

– Full Single Writer – Multiple Reader (SWMR)

– Design Parallel SWMR

25

Full SWMR

• Single-Writer / Multiple-Reader (SWMR) allows

– Concurrent access to HDF5 file by a single

writing process and many readers

– High-performance, lock-free updates

– Changes to HDF5 files can be streamed to

remote locations, enabling super-facility solutions

– Moves HDF5 containers closer to “file system in

a file”

– Serial only, currently
• ECP project includes funding for parallel SWMR

design though…

26

ExaHDF5 – Production Features

• Asynchronous I/O

– Support for asynchronous I/O operations in HDF5 (serial only)

• Independent metadata updates for parallel HDF5

– Metadata updates currently require collective operations

– Break the collective dependencies in updating metadata

• Querying HDF5 Files - Data and Metadata

– Basic implementation of querying data is available

– Integrating indexing and querying into HDF5

– Adding metadata querying feature

• Interoperability with other file formats

– Capability to read netCDF/PnetCDF and ADIOS files, using VOL

27

Asynchronous I/O

• Asynchronous I/O for HDF5 allows
– Application to queue operations on an HDF5 file,

then check back later for completion
– Uses “event set” object that holds many

operations, instead of tokens on single
operations
• For ease of use and to preserve dependencies

– H5Fopen → H5Gcreate → H5Dcreate → H5Dwrite

– Applications can then overlap compute,
communication, and I/O
• The “trifecta” of high-performance computing: use

the entire system simultaneously

28

ExaHDF5 – More Features

• Asynchronous I/O

– Support for asynchronous I/O operations in HDF5 (serial only)

• Independent metadata updates for parallel HDF5

– Metadata updates currently require collective operations

– Fix the collective dependency in updating metadata ☺

• Querying HDF5 Files - Data and Metadata

– Basic implementation of querying data is available

– Integrating indexing and querying into HDF5

– Adding metadata querying feature

• Interoperability with other file formats

– Capability to read netCDF/PnetCDF and ADIOS files, using VOL

29

Independent Metadata Updates

• Independent Metadata Updates (IMU) allow
any MPI process to modify the structure of an
HDF5 file

• IMU addresses the “all collective metadata”
limit on parallel HDF5 files
– Currently, any operation that modifies metadata

in an HDF5 file must be done collectively

• Moves even closer to “file system in a file” for
HDF5 containers

30

ExaHDF5 – More Features

• Asynchronous I/O

– Support for asynchronous I/O operations in HDF5 (serial only)

• Independent metadata updates for parallel HDF5

– Metadata updates currently require collective operations

– Break the collective dependencies in updating metadata

• Querying HDF5 Files - Data and Metadata

– Basic implementation of querying data is available

– Integrating indexing and querying into HDF5

– Adding metadata querying feature

• Interoperability with other file formats

– Capability to read netCDF/PnetCDF and ADIOS files, using VOL

31

Querying HDF5 Data and Metadata

• Application queries into HDF5 containers:
– Link / attribute name
– Dataspace dimensionality / size
– Datatype choice
– Dataset / attribute element value / range

• “Programmatic”, not “text-based”
– e.g. “H5Qdefine(qid, H5Q_LESSTHAN, type_id, &52);”

• Pluggable interface for third-party index modules
– Optional, but used to accelerate queries when available /

appropriate

• Queries return “views”
– Temporary groups in the HDF5 file that contain datasets with

the actual query results

32

ExaHDF5 – More Features

• Asynchronous I/O

– Support for asynchronous I/O operations in HDF5 (serial only)

• Independent metadata updates for parallel HDF5

– Metadata updates currently require collective operations

– Break the collective dependencies in updating metadata

• Querying HDF5 Files - Data and Metadata

– Basic implementation of querying data is available

– Integrating indexing and querying into HDF5

– Adding metadata querying feature

• Interoperability with other file formats

– Capability to read netCDF/PnetCDF and ADIOS files, using VOL

33

Interoperability w/ Other File Formats

• Virtual Object Layer (VOL) allows intercepting
HDF5 API and accessing data in alternate
ways, including other file formats

• ExaHDF5 feature enables expanding the HDF5
API to access other file formats
– netCDF/PnetCDF, ADIOS, etc.

• Intercept HDF5 Read API calls using VOL
– Redirect the calls to read data from other

formats

34

ExaHDF5 – Development timeline

35

Experimental & Observational Data

(EOD) Management Requirements

• Experimental and observational science (EOS) facilities have

data management requirements beyond existing HDF5

features

• Targeted science drivers

– LCLS / LCLS-II, LSST, ALS, NIF

• Requirements

– Multiple producers and multiple consumers of data

– Remote streaming synchronization

– Handling changes in data, data types, and data schema

– Search metadata and provenance directly in HDF5 files

– Support for different forms of data - Streaming, sparse, KV, etc.

– Optimal data placement

36

EOD-HDF5 - Proposed features

• Multi-modal access and distributed data in workflows

– Multiple Writers, Multiple Readers (MWMR)

– Distribution of local changes to remote locations

• Data model extensions

– Storing new forms of data (KV, index-like data structures,

streaming data)

– Addressing science data schema variation

– Managing collections of containers

• Metadata and provenance management

– Capturing and storing rich metadata contents and provenance

– Searching metadata and provenance

– Optimal data placement based on data analysis patterns

37

Future HDF5 Features

• Performance improvements for both small and large-

scale I/O

– Resource usage profiling in HDF5 to identify bottlenecks

– Automatic bottleneck avoidance techniques

• Sub-filing and other topology-aware I/O

– TAPIOCA, etc.

• Fill Parallel I/O Gaps

– Parallel Async & SWMR

• Enhance storage model

– Column-oriented & Sparse data storage

• Track Future Technology Changes

– Object file system VOL plugins (DAOS, Ceph, MarFS, …)

38

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2016. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Andreas Dilger

High Performance Data Division

SC'17, Denver

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2017. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.
40

Composite File Layout allows different layout based on file offset

▪ Provides flexible layout infrastructure for upcoming features

– Data-on-MDT (DoM), File Level Redundancy (FLR), HDF library integration, etc.

▪ Layout components can be disjoint (e.g. PFL) or overlapping (e.g. FLR)

Progressive File Layout (PFL) simplifies usage for users and admins

▪ Optimize performance for diverse users/applications

▪ One PFL layout could be used for all files

▪ Low stat overhead for small files

▪ High IO bandwidth for large files

Composite/Progressive File Layout Lustre 2.10

Example progressive file layout with 3 components

1 stripe

[0, 32MB)

4 stripes

[32MB, 1GB)

128 stripes

[1GB, ∞)

SSD
…

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2017. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Tiered Storage and File Level Redundancy
Data locality, with direct access from clients to all storage tiers as needed

Metadata

Servers

(~100’s)

Object

Storage

Servers

(~1000’s)

Metadata

Targets

(MDTs)

Management

Target (MGT)

Object Storage Targets (OSTs)

(Warm Tier SAS)

Lustre Clients (~50,000+)NVMe MDTs
client network

Archive OSTs/Tape

(Cold Tier Erasure Code)

Policy
Engine

NVMe Burst Buffer/Hot Tier OSTs
on client network

41

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2017. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Significant value and functionality added for HPC and other environments

▪ Optionally set on a per-file/dir basis - flexibility to tune as application/user needs

▪ Higher availability for server/network failure – finally better than HA failover

▪ Robust against data loss/corruption – mirror (and later erasure code) data across OSTs

▪ Migrate NVM<->SSD<->HDD<->Archive, but allows direct access if needed

Configure redundancy on a per-file or directory basis, for example:

▪ Pre-stage files to SSD for read/write

▪ Mirror only 1 of 24 hourly checkpoints

▪ 12+3 erasure code large striped files

▪ Write to SSD for IOPS, mirror to HDD

File Level Redundancy Lustre 2.11+

42

Replica 0 -

PREFER
SSD OST

Replica 1 -

DELAY SYNC

INDEX -

SSD
DATA - HDD OSTs

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2017. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.
43

Phase 0: Composite Layouts from PFL project Lustre 2.10

▪ Plus OST pool inheritance, Project/Pool Quotas

Phase 1: Delayed read-only mirroring – depends on Phase 0 Lustre 2.11

▪ Manually replicate and migrate files across multiple tiers

Phase 2: Integration with policy engine/copytool - with/after Phase 1

▪ Automated migration between tiers based on admin policy/space

Phase 3: Immediate write replication – depends on Phase 1 Lustre 2.12?

▪ Client writes file data to multiple OSTs in parallel

Phase 4: Erasure coding for striped files - with/after Phase Lustre2.12?

▪ Avoid 2x or 3x overhead of mirroring files

FLR Phased Implementation Approach
Can implement Phases 2/3/4 in any order

Statements regarding future functionality are estimates only and are subject to change without notice

Copyright ® Intel Corporation 2017. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Legal Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life-saving, life-sustaining, critical control or safety systems, or in nuclear facility applications.

Intel products may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document may contain information on products in the design phase of development. The information herein is subject to change without notice. Do not finalize a design with this information. Intel may make changes to dates, specifications,
product descriptions, and plans referenced in this document at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Intel Corporation or its subsidiaries in the United States and other countries may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Performance estimates or simulated results based on internal Intel analysis or architecture simulation or modeling are provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your
actual performance.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more complete information about performance and
benchmark results, visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice Revision #20110804.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated

frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at

http://www.intel.com/go/turbo.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Intel, the Intel logo, 3D-Xpoint, Optane, Xeon Phi, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2017 Intel Corporation. All rights reserved.

44

PETTTDISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Experiences with HDF5:

I/O Mini-apps, Compression

& Physics-based Simulations

Presented by

Sean Ziegeler (Engility PETTT)

November 15, 2017

User Productivity Enhancement,

Technology Transfer, and Training (PETTT)

47PETTT

Topics

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

MiniIO: I/O Mini-apps

Compression Study
–Results

HDF5 Autotuner Results

How/Why HDF5

What do we need from HDF5?

48PETTT

MiniIO: I/O Mini-apps

MPI, no threads (yet, but can be simulated with fewer ranks per node)

Four apps for now, common physics-based HPC simulation data structures
– All are interesting use cases for compression, but here we focus on one

MPI-IO, ADIOS, & HDF5 output options

Built explicitly around physics-based code options
– Not extracted code kernels or emulators, as per, e.g., skel or MACSio or general I/O

benchmarks like IOR

– Why not? (1) Skel only for ADIOS; MACSio had not been published yet

– Why not? (2) MiniIO provides numerous physics-based simulation options (grid settings, load
balancing, variable settings …) that can be directly mapped to performance

– IOR or MACSio could work in the long run, but we would need to ensure all MiniIO features
mapped properly to them

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

49PETTT

MiniIO: I/O Mini-apps

”Unstruct”

”Cartiso”

”Struct”

”AMR”

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

50PETTT

Struct Mini-app

Struct: structured grids with masks/blanking
–Masks for missing or invalid data (e.g. land in an ocean model)

2D simplectic noise to generate synthetic mask maps

Can choose % of blanked data points

Noise frequency governs sizes of blanked areas (continents vs islands)

–4D simplectic noise to fill time-variant variables

–Option for load balancing non-masked points evenly (as
desired) across ranks

But creates load imbalance
for I/O because blanked data
is still written

Compression theoretically
rebalances the I/O (blanked
constants compress well)

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

51PETTT

4D Simplectic Noise & Compression

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

C
o
m
p
re
ss
io
n
	R
a
ti
o

OSN	frequency

Gzip

BZip2

XZip

PAQ8P

Rendering of a volume

of simplectic noise

Compression results of simplectic noise

at various frequencies

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

52PETTT

Results

0.00

50.00

100.00

150.00

200.00

528 4048 8008 21912

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

Broadwell ADIOS POSIX

Unbal./No Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

512 4096 8192

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

KNL ADIOS POSIX

Computationally

unbalanced

Balanced (I/O unbalanced!)

ADIOS POSIX: one file per rank

Red: No compression

Blue: zlib deflate compression (think gzip)

Green: szip compression

Purple: zfp (error bounded lossy, 0.0001), ~9:1 on average

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

53PETTT

Results

0.00

50.00

100.00

150.00

200.00

528 4048 8008 21912

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Cores

Broadwell ADIOS POSIX

Unbal./No Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

512 4096 8192

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Cores

KNL ADIOS POSIXADIOS POSIX: one file per rank

 Initial scalability with core count

Computational balancing hurts performance a little
– But compression sometimes helps

Zfp is the fastest compression

KNL is slower

ADIOS POSIX is the fastest without compression
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

54PETTT

Results

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

528 4048 8008 21912

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

Broadwell ADIOS MPI-Lustre

Unbal./No Compr.

Unbal./zlib

Unbal./szip

Unbal./zfp

Bal./No Compr.

Bal./zlib

Bal./szip

Bal./zfp

0.00

20.00

40.00

60.00

80.00

100.00

512 4096 8192

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

KNL ADIOS MPI-LustreADIOS MPI-Lustre: one file for all ranks, tuned for Lustre file system on that system

Good scalability with core count, especially with compression

Computational balancing hurts performance a little
– But compression mostly helps

Zfp is by far the fastest compression

KNL is much slower, especially the compression

MPI-Lustre is the fastest with compression
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

55PETTT

Results

0

10

20

30

40

50

60

70

80

528 4048 8008 21912

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

Broadwell HDF5

Unbal./No Compr.

Unbal./zlib

Unbal./szip

Unbal./shuffle+zlib

Bal./No Compr.

Bal./zlib

Bal./szip

Bal./shuffle+zlib

0.00

5.00

10.00

15.00

20.00

25.00

512 4096 8192

Th
ro

ug
hp

ut
 (

G
B

/s
)

Cores

KNL HDF5HDF5: one file for all ranks

Starts slower, but scalability with core count, especially with compression

Computational balancing hurts performance a lot
– But compression helps somewhat

Shuffle+zlib is the fastest compression (zfp not available at the time)

KNL is much slower, especially the compression

HDF5 can scale with compression

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

56PETTT

HDF5 Autotuner Results

0

20

40

60

80

100

120

64 cores 512 cores

Ti
m

e
 (

s)

Cartiso Full Output

Default

Tuned 1 hour

Tuned 3 hours

0

10

20

30

40

50

60

70

80

64 cores 512 cores

Ti
m

e
 (

s)

Cartiso Isosurface Output

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

57PETTT

How/Why do we use HDF5?

The most standardized format
–Can find some way to use HDF5 in Ensight, VisIt, ParaView …

–The primary underlying format for the CGNS standard

–Also via netCDF-4 (built atop HDF5)

Yet more flexible than other formats
–Hierarchies, non-structured data, analytics with binary data

–Weirdness is usually at odds with standardization

Already installed on most of our systems

Compression and other filters

Emerging features like Virtual Data Sets (VDS)

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

58PETTT

What do we need from HDF5?

Continued improvements to parallel performance
–Ensure that transitions to netCDF

Smarter handling of parallel file systems
–Very difficult for users to set stripe counts, stripe sizes, collective buffering

–Autotuner is helpful but difficult to use

–Potentially integrate into the library

Zfp with HDF5
–Transition to netCDF

VDS for parallel I/O
–Very promising approach to transcend single-file limitations

–Transition to netCDF

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

59PETTT

This material is based upon work supported by,

or in part by, the Department of Defense

High Performance Computing Modernization Program (HPCMP)

under User Productivity, Technology Transfer and Training (PETTT)

contract number GS04T09DBC0017.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

SC17 HDF5 BoF. Nov. 15, 2017

Block-Structured Adaptive Mesh Refinement (AMR)
• Refined regions are organized into rectangular patches.

• Refinement in time as well as in space for time-dependent problems.
• Local refinement can be applied to any structured-grid data, such as bin-sorted
particles.

60

SC17 HDF5 BoF. Nov. 15, 2017

Chombo and HDF5
• HDF5 is our primary IO Middleware on all

platforms

– Portable plot and checkpoint files

– Reader for Visit

– Parallel IO with hyperslabs (using our own global
variable ordering)

• New roles

– Code coupling between Chombo (structured AMR) and
GEOS (unstructured FEM)

– Asynchronous workflow through NVRAM technologies

61

SC17 HDF5 BoF. Nov. 15, 2017

Wish List
• warning: 'tmpnam' is deprecated

– Need temporary file creation mechanism
– Workflow, using HDF5 in debugger

• Code coupling without requiring disk
– RAM to RAM transfer in MPI jobs (ie pipe)
– Possibly with disk backing

• DataMover (asynchronous data migration, workflow)
• FArrayBox to “Object Store”

– Tag FArrayBox with [time,level,index] key, receive future

• FASTBit
• Aggregated IO handled for me
• Set Lustre file system parameters for me.

62

