

Outline

Cloud modeling and HPC

CM1 model

LOFS structure

A brief word on HDF5_ CORE

ZFP compression

LOFS API/hdf2nc conversion utility

Some research results - why | bothered with all of this!
Final thoughts

Cloud modeling and HPC

Weather forecasting, whether on global or thunderstorm
scale, is computationally expensive to do right

Typical atmospheric models use explicit finite difference
techniques to solve a system of partial differential
equations to determine the next 3D model state in time

Data must be saved periodically in order to analyze and
process

As models have gotten more sophisticated and run at
higher resolution, I/O has become a serious bottleneck

My own research on tornadoes produces a tremendous
amount of model output

CM1 model

Fortran95, 32 bit float computational arrays, MPI, OpenMP

Currently, the most widely used cloud model for doing
basic research involving highly idealized simulations of
clouds

Contains “fast” I/O methods that result in many millions
files of a fragmented domain in a single directory, or “slow”
I/O methods with more friendly output

In order to conduct and analyze large simulations of
tornado producing thunderstorms on NSF’s Blue Waters, |
needed I/O that was very fast (low latency, high
throughput), compressed significantly, and easy to
analyze/read back. This resulted in LOFS.

LOFS directory/file structure

history (top level directory)

L 3D (3D floating point data)
tornado.03000.000000 (50 s ofdatain 1 s chunks)
tornado.03050.000000 (50 s ofdatain 1 s chunks)

0000000 (contains up to 1000 files)
0001000 (contains up to 1000 files)

0008000 (contains up to 1000 files)

0009000 (contains up to 1000 files)
tornado.07200.000000.0009000.cmlhdf5
tornado.07200.000000.0009001.cmlhdf5

LOFS files

¢ One file per shared-memory node is written

e | created a new MPI communicator for CM1 that maps
ranks to the hardware such that each node contains a
continuous volume of data (not scrambled up)

e During each write cycle, one rank per node collects data
(using MPI_Gather) and does the compressing and
buffering to memory to grow the HDF5 file

¢ This operation is blocking (there is no core dedicated to
I/0O only)

Example hardware configuration with 4 nodes, 16 cores per node

ranks before reordering

ranks after reordering

45 46 47 48
41 42 43 44

37 38 39 40
33 34 35 36

61 62 63 64
57 58 59 60
53 54 55 56
49 50 51 52

57 58 59 60
49 50 51 52
41 42 43 44
33 34 35 36

61 62 63 64
53 54 55 56
45 46 47 48

37 38 39 40

1314 15 16
9 10 11 12
5 6 7 8
1 2 3 4

29 30 31 32
25 26 27 28
21 22 23 24
17 18 19 20

2526 27 28
1718 19 20
9 10 1112
1 2 3 4

29 30 31 32
21 22 23 24
13 14 15 16
5 6 7 8

Example hardware configuration with 4 nodes, 16 cores per node

ranks before reordering

ranks after reordering

45 46 47 48|61 62 63 64 || MPl_Gather on each node
41 42 43 44|57 58 59 60 4@52 3 54,55 56
37 38 39 40|53 54 55 56||4 43 44|45 A6 47 48
33 34 35 36|49 50 51 52||3 35 36 9 40
13 14 15 16 |29 30 31 32|35 26 27 28
9 10 11 12|25 26 27 28|17 18 A9 20
5 6 7 81212223 24 0 1112
1 2 3 417 1819 20|| V<23 4

Memory-buffered 1/0

Early on | settled on HDF5, but it took years before |
figured out how to exploit some its useful features

| tried pHDF5 in various configurations, had serious
inexplicable performance issues

Once | discovered the core (HDF5_CORE) driver |
devised a driver around the fact that buffering data to
memory is a lot faster than writing to disk

This works because the CM1 model when run at large
scale only takes up a few % of available memory on a
shared memory node

A brief word on HDF5_ CORE

e Seriously undersold! From the HDF5 website:
H5FD_CORE: This driver performs I/O directly to memory
and can be used to create small temporary files that never
exist on permanent storage.

e My files are friggin’ huge, and for me it’s all about the
permanent storage!

e Using the core driver allowed me to save 50-100 time
steps in a single file, all buffered to memory, and later
flushed to disk, one file per node.

ZFP compression

ZFP can be installed as a HDF5 plugin

ZFP is a lossy compression algorithm (we should all be
using these more!)

Accuracy for any field can be specified upfront. Example: |
only need temperature data that is accurate within 0.1 °C:
hb5pset_zfp_accuracy (chunk_id,0.1);
Compression ratios are strongly a function of the
magnitude of the accuracy parameter relative to the
magnitude of the underlying data

Example ZFP performance for 10-m tornado simulation

60 .
-
I
I
I
50 X
I
I
I
7 — '
0 1
%]
E I
g. I
I
g 30 - I il
5 | |
5 |
R L
20 : - :
ES |
— i L I
|] |
10} | : é o -
B & T 4
= =
0 1 1 1 1 1
dbz prespert qgvpert qc thrhopert w
1.0 dBZ 0.1 hPa 0.01 g/kg 0.05 g/kg 0.001 K 0.0001 m/s

Variable and ZFP accuracy parameter choice

HDF5 internal structure (some h5ls -r output)

/basestate/u0® Dataset {266} /00029/2D/swath/zeta min_sfc Dataset {399, 50}
/basestate/v0 Dataset {266} /00029/2D/swath/zeta_min_sfc_move Dataset {399, 50}
/grid Group /00029/3D Group

/grid/MCMnx Dataset {1} /00029/3D/dbz Dataset {266, 399, 50}
/grid/MCMny Dataset {1} /00029/3D/khh Dataset {266, 399, 50}
Vlgrid/cores_per MCM Dataset {1} /00029/3D/khv Dataset {266, 399, 50}
/grid/corex Dataset {1} /00029/3D/kmh Dataset {266, 399, 50}
/grid/corey Dataset {1} /00029/3D/kmv Dataset {266, 399, 50}
/grid/myMCMid Dataset {1} /00029/3D/ncg Dataset {266, 399, 50}
/grid/myi Dataset {1} /00029/3D/nci Dataset {266, 399, 50}
/grid/myj Dataset {1} /00029/3D/ncr Dataset {266, 399, 50}
/grid/ni Dataset {1} /00029/3D/ncs Dataset {266, 399, 50}
/grid/nj Dataset {1} /00029/3D/prespert Dataset {266, 399, 50}
/grid/nodex Dataset {1} /00029/3D/qc Dataset {266, 399, 50}
/grid/nodey Dataset {1} /00029/3D/qg Dataset {266, 399, 50}
/grid/nx Dataset {1} /00029/3D/qi Dataset {266, 399, 50}
/grid/ny Dataset {1} /00029/3D/qr Dataset {266, 399, 50}
/grid/nz Dataset {1} /00029/3D/qs Dataset {266, 399, 50}
/grid/xe Dataset {1} /00029/3D/qvpert Dataset {266, 399, 50}
/grid/x1 Dataset {1} /00029/3D/rhopert Dataset {266, 399, 50}
/grid/y0 Dataset {1} /00029/3D/thpert Dataset {266, 399, 50}
/grid/yl Dataset {1} /00029/3D/thrhopert Dataset {266, 399, 50}
/mesh Group /00029/3D/tke_sg Dataset {266, 399, 50}
/mesh/dx Dataset {1} /00029/3D/u Dataset {266, 399, 50}
/mesh/dy Dataset {1} /00029/3D/v Dataset {266, 399, 50}
/mesh/dz Dataset {1} /00029/3D/w Dataset {266, 399, 50}
/mesh/umove Dataset {1} /00030 Group

/mesh/vmove Dataset {1} /00030/2D Group

/mesh/xf Dataset {50} /00030/2D/static Group

/mesh/xffull Dataset {1601} //00030/2D/static/snapshot dbz 0500 Dataset {399, 50}
/mesh/xh Dataset {50} /00030/2D/static/snapshot prespert 0500 Dataset {399, 50}
/mesh/xhfull Dataset {1600} /00030/2D/static/snapshot prespert sfc Dataset {399, 50}
/mesh/yf Dataset {399} /00030/2D/static/snapshot qc 1000 Dataset {399, 50}
/mesh/yffull Dataset {1597} /00030/2D/static/snapshot _qc 2000 Dataset {399, 50}

/mesh/yh Dataset {399} /00030/2D/static/snapshot thrho sfc Dataset {399, 50}

LOFS APIl/hdf2nc conversion utility

Main routine “hdf2nc” (written in C) converts any
subdomain of LOFS data to a single CF-compliant
NetCDF file

NetCDF is read by most major analysis/viz tools and
highly used in weather/climate (developed at Unidata)

Completely refactored code earlier this year, making is
much easier to access data through a simple API

LOFT, offline GPU trajectory analysis code (C++ and
CUDA C++) developed by Kelton Halbert accesses the
LOFS API directly

hdf2nc pseudocode

#include "../include/lofs-read.h"
#include "../include/lofs-dirstruct.h"
#include "../include/lofs-hdf2nc.h"
#include "../include/lofs-limits.h"

int maln(lnt argc, char *argv[])
{
init structs(&cmd,&dm,&gd,&nc,&rh);
parse cmdline hdf2nc(argc,argv,&cmd,&dm,&gd) ;
get num time dirs(&dm,cmd); get sorted time dirs(&dm,cmd); get num node dirs(&dm,cmd);
get sorted node dirs(&dm,cmd); get saved base(dm.timedir[O],dm.saved base);
get all available times (&dm,&gd, cmd) ;
hdf file id = H5Fopen (dm.firstfilename, H5F ACC RDONLY,H5P DEFAULT)
get hdf metadata(dm,&hm,&cmd,argv,&hdf file id);
set span(&gd,hm,cmd); allocate 1d arrays(hm, gd, &msh, &snd);
set 1d arrays(hm,gd,&msh,&snd, &hdf file id);
status = nc create (nc.ncfilename, NC _ CLOBBER|cmd. filetype, &nc.ncid);
set netcdf attributes(&nc,gd,&cmd,&b,&hm,&hdf file id); status = nc_enddef (nc.ncid);
nciwrlteildidata(nc gd,msh,snd,cmd) ; setireadahead(&rh nc,cmd);
malloc 3D arrays(&b,gd,rh,cmd); H5Z zfp initialize();
if (cmd.do swaths) do_the swaths(hm,nc,dm,gd,cmd);
do readahead(&b gd, rh, ,dm,hm, cmd) ; do requested variables(&b,nc,gd,msh,rh,dm,hm,cmd);
status = nc_close(nc.ncid); H5Z zfp finalize(); free 3D arrays(&b,gd,rh,cmd);
if(cmd.gzip) compress with nccopy(nc,cmd);

VAPORS3: Vorticity(L) and cloud(R) during tornadogenesis

A e —————
NPz 7%
/1/‘?/ Q

Vorticity(L) and cloud(R) during tornadogenesis

N

Vort|C|ty(L) and cloud(R) during tornadogenesis

Vorticity(L) and cloud(R) during tornado maintenance

.

——
’ o
—— — — .
i '-W Q/-

-

S

—

Final thoughts

It's all about performance and getting that data to disk as
efficiently as possible, in a well organized fashion

HDF5 functionality has enabled science that wouldn'’t
have been possible otherwise

Lossy floating point compression (ZFP in our case) is key
for performance and lets us save more data than would
otherwise be possible

Core I/O driver in a “serial I/O in parallel” configuration for
large MPI runs performs extremely well

LOFS file system comprised of HDF5 files could be used
in any code that uses a similar 2D domain decomposition
strategy

Acknowledgments/Links

e Simulations conducted on the NSF-sponsored Blue
Waters supercomputer

e Leigh Orf is supported by NSF grants AGS-1832327,

OAC-1663954

Thanks to Gerd Heber for assistance (2016)

Source code available at github.com/leighorf

Some LOFS documentation: 1ofs.io

Links to talks, movies, publications, etc: orf .media

Reference: Orf, L., 2019: A Violently Tornadic Supercell Thunderstorm Simulation
Spanning a Quarter-Trillion Grid Volumes: Computational Challenges, I/O Framework, and
Visualizations of Tornadogenesis. Atmosphere (10) 578.

open access; DOI: 10.3390/atmos10100578

Questions?

https://github.com/leighorf
http://lofs.io
http://orf.media
https://doi.org/10.3390/atmos10100578

	Cloud modeling and HPC
	CM1 model
	LOFS structure
	A brief word on HDF5_CORE
	ZFP compression
	LOFS API/hdf2nc conversion utility
	Some research results - why I bothered with all of this!
	Final thoughts

