
A simple file system for massively parallel
cloud models

Leigh Orf

Cooperative Institute for Meteorological Satellite Studies/SSEC
University of Wisconsin - Madison

2020 Virtual HDF5 Users Group

15 October 2020



Outline

Cloud modeling and HPC

CM1 model

LOFS structure

A brief word on HDF5_CORE

ZFP compression

LOFS API/hdf2nc conversion utility

Some research results - why I bothered with all of this!

Final thoughts



Cloud modeling and HPC

• Weather forecasting, whether on global or thunderstorm
scale, is computationally expensive to do right

• Typical atmospheric models use explicit finite difference
techniques to solve a system of partial differential
equations to determine the next 3D model state in time

• Data must be saved periodically in order to analyze and
process

• As models have gotten more sophisticated and run at
higher resolution, I/O has become a serious bottleneck

• My own research on tornadoes produces a tremendous
amount of model output



CM1 model

• Fortran95, 32 bit float computational arrays, MPI, OpenMP
• Currently, the most widely used cloud model for doing

basic research involving highly idealized simulations of
clouds

• Contains “fast” I/O methods that result in many millions
files of a fragmented domain in a single directory, or “slow”
I/O methods with more friendly output

• In order to conduct and analyze large simulations of
tornado producing thunderstorms on NSF’s Blue Waters, I
needed I/O that was very fast (low latency, high
throughput), compressed significantly, and easy to
analyze/read back. This resulted in LOFS.



LOFS directory/file structure

history (top level directory)
3D (3D floating point data)

tornado.03000.000000 (50 s of data in 1 s chunks)
tornado.03050.000000 (50 s of data in 1 s chunks)
...

0000000 (contains up to 1000 files)
0001000 (contains up to 1000 files)
...
0008000 (contains up to 1000 files)
0009000 (contains up to 1000 files)

tornado.07200.000000.0009000.cm1hdf5
tornado.07200.000000.0009001.cm1hdf5
...



LOFS files

• One file per shared-memory node is written
• I created a new MPI communicator for CM1 that maps

ranks to the hardware such that each node contains a
continuous volume of data (not scrambled up)

• During each write cycle, one rank per node collects data
(using MPI_Gather) and does the compressing and
buffering to memory to grow the HDF5 file

• This operation is blocking (there is no core dedicated to
I/O only)



Example hardware configuration with 4 nodes, 16 cores per node
ranks before reordering ranks after reordering

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48

49 50 51 52
53 54 55 56
57 58 59 60
61 62 63 64

20
24
28
32
52
56
60
64

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64



Example hardware configuration with 4 nodes, 16 cores per node
ranks before reordering ranks after reordering

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

33 34 35 36
37 38 39 40
41 42 43 44
45 46 47 48

49 50 51 52
53 54 55 56
57 58 59 60
61 62 63 64

20
24
28
32
52
56
60
64

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64MPI_Gather on each node



Memory-buffered I/O

• Early on I settled on HDF5, but it took years before I
figured out how to exploit some its useful features

• I tried pHDF5 in various configurations, had serious
inexplicable performance issues

• Once I discovered the core (HDF5_CORE) driver I
devised a driver around the fact that buffering data to
memory is a lot faster than writing to disk

• This works because the CM1 model when run at large
scale only takes up a few % of available memory on a
shared memory node



A brief word on HDF5_CORE

• Seriously undersold! From the HDF5 website:
H5FD_CORE: This driver performs I/O directly to memory
and can be used to create small temporary files that never
exist on permanent storage.

• My files are friggin’ huge, and for me it’s all about the
permanent storage!

• Using the core driver allowed me to save 50-100 time
steps in a single file, all buffered to memory, and later
flushed to disk, one file per node.



ZFP compression

• ZFP can be installed as a HDF5 plugin
• ZFP is a lossy compression algorithm (we should all be

using these more!)
• Accuracy for any field can be specified upfront. Example: I

only need temperature data that is accurate within 0.1 ◦C:
h5pset_zfp_accuracy(chunk_id,0.1);

• Compression ratios are strongly a function of the
magnitude of the accuracy parameter relative to the
magnitude of the underlying data



Example ZFP performance for 10-m tornado simulation

dbz
1.0 dBZ

prespert
0.1 hPa

qvpert
0.01 g/kg

qc
0.05 g/kg

thrhopert
0.001 K

w
0.0001 m/s

Variable and ZFP accuracy parameter choice

0

10

20

30

40

50

60

%
 o

f 
u
n
co

m
p
re

ss
e
d



HDF5 internal structure (some h5ls -r output)



LOFS API/hdf2nc conversion utility

• Main routine “hdf2nc” (written in C) converts any
subdomain of LOFS data to a single CF-compliant
NetCDF file

• NetCDF is read by most major analysis/viz tools and
highly used in weather/climate (developed at Unidata)

• Completely refactored code earlier this year, making is
much easier to access data through a simple API

• LOFT, offline GPU trajectory analysis code (C++ and
CUDA C++) developed by Kelton Halbert accesses the
LOFS API directly



hdf2nc pseudocode



VAPOR3: Vorticity(L) and cloud(R) during tornadogenesis



Vorticity(L) and cloud(R) during tornadogenesis



Vorticity(L) and cloud(R) during tornadogenesis



Vorticity(L) and cloud(R) during tornadogenesis



Vorticity(L) and cloud(R) during tornado maintenance



Vorticity(L) and cloud(R) during tornado maintenance



Final thoughts

• It’s all about performance and getting that data to disk as
efficiently as possible, in a well organized fashion

• HDF5 functionality has enabled science that wouldn’t
have been possible otherwise

• Lossy floating point compression (ZFP in our case) is key
for performance and lets us save more data than would
otherwise be possible

• Core I/O driver in a “serial I/O in parallel” configuration for
large MPI runs performs extremely well

• LOFS file system comprised of HDF5 files could be used
in any code that uses a similar 2D domain decomposition
strategy



Acknowledgments/Links

• Simulations conducted on the NSF-sponsored Blue
Waters supercomputer

• Leigh Orf is supported by NSF grants AGS-1832327,
OAC-1663954

• Thanks to Gerd Heber for assistance (2016)
• Source code available at github.com/leighorf
• Some LOFS documentation: lofs.io
• Links to talks, movies, publications, etc: orf.media

Reference: Orf, L., 2019: A Violently Tornadic Supercell Thunderstorm Simulation
Spanning a Quarter-Trillion Grid Volumes: Computational Challenges, I/O Framework, and
Visualizations of Tornadogenesis. Atmosphere (10) 578.
open access; DOI: 10.3390/atmos10100578

Questions?

https://github.com/leighorf
http://lofs.io
http://orf.media
https://doi.org/10.3390/atmos10100578

	Cloud modeling and HPC
	CM1 model
	LOFS structure
	A brief word on HDF5_CORE
	ZFP compression
	LOFS API/hdf2nc conversion utility
	Some research results - why I bothered with all of this!
	Final thoughts

